断层、滑坡、泥石流、局部沉陷、隧道开挖等引起的管周土体失稳严重威胁埋地管道的稳定性,避免因为地质灾害的影响而造成管道破坏,是城市和油气田地下生命线工程急需解决的问题。数值模拟作为埋地管道与管周土相互作用分析的主要技术手段,可为埋地管道的全寿命设计提供更为快捷准确的指导。该文简述了地质灾害作用下埋地管道力学响应数值分析的研究进展,主要包括埋地管道典型地质灾害特点、管土相互作用单元及管道穿越地质灾害区有限元模型,并针对地质灾害作用下管道力学行为研究中所存在的问题,提出今后应开展基于壳式模型的管土相互作用、多种地质灾害耦合作用下管道力学行为和基于应变设计与评估准则的研究。
断层、滑坡、泥石流、局部沉陷、隧道开挖等引起的管周土体失稳严重威胁埋地管道的稳定性,避免因为地质灾害的影响而造成管道破坏,是城市和油气田地下生命线工程急需解决的问题。数值模拟作为埋地管道与管周土相互作用分析的主要技术手段,可为埋地管道的全寿命设计提供更为快捷准确的指导。该文简述了地质灾害作用下埋地管道力学响应数值分析的研究进展,主要包括埋地管道典型地质灾害特点、管土相互作用单元及管道穿越地质灾害区有限元模型,并针对地质灾害作用下管道力学行为研究中所存在的问题,提出今后应开展基于壳式模型的管土相互作用、多种地质灾害耦合作用下管道力学行为和基于应变设计与评估准则的研究。
断层、滑坡、泥石流、局部沉陷、隧道开挖等引起的管周土体失稳严重威胁埋地管道的稳定性,避免因为地质灾害的影响而造成管道破坏,是城市和油气田地下生命线工程急需解决的问题。数值模拟作为埋地管道与管周土相互作用分析的主要技术手段,可为埋地管道的全寿命设计提供更为快捷准确的指导。该文简述了地质灾害作用下埋地管道力学响应数值分析的研究进展,主要包括埋地管道典型地质灾害特点、管土相互作用单元及管道穿越地质灾害区有限元模型,并针对地质灾害作用下管道力学行为研究中所存在的问题,提出今后应开展基于壳式模型的管土相互作用、多种地质灾害耦合作用下管道力学行为和基于应变设计与评估准则的研究。
多年冻土区油气管道工程在许多方面都有别于常温地区的油气管道工程,如偏僻的地理位置和敏感脆弱的环境,更重要是其特殊的气候、水文地质和工程地质条件以及冻融岩土灾害等条件。这使得管道设计、建设、运营、维抢和管道系统安全以及完整性管理等方面面临一系列的特殊难题。不同于已建成并运营至今的美国阿拉斯加(Alyeska)原油管道、加拿大罗曼井(Norman Wells)原油管道、中俄原油管道(漠河—大庆段)和格尔木—拉萨成品油管道,多年冻土区的天然气管道在输运介质、输送温度、环保要求等方面和输油管道有很大差异,将面临一系列新问题和新挑战。通过对多年冻土区天然气管道冷却输送工艺,管道—冻土水、热、力耦合计算,压气站失效后下游管道最低金属温度超限,基于应力设计局限、敷设方式单一、管道运营期监测系统可靠性等冻土区天然气管道特有的技术难题探讨,初步给出相应的解决方案构想,希望能够为冻土区天然气管道建设提供新的思路。
多年冻土区油气管道工程在许多方面都有别于常温地区的油气管道工程,如偏僻的地理位置和敏感脆弱的环境,更重要是其特殊的气候、水文地质和工程地质条件以及冻融岩土灾害等条件。这使得管道设计、建设、运营、维抢和管道系统安全以及完整性管理等方面面临一系列的特殊难题。不同于已建成并运营至今的美国阿拉斯加(Alyeska)原油管道、加拿大罗曼井(Norman Wells)原油管道、中俄原油管道(漠河—大庆段)和格尔木—拉萨成品油管道,多年冻土区的天然气管道在输运介质、输送温度、环保要求等方面和输油管道有很大差异,将面临一系列新问题和新挑战。通过对多年冻土区天然气管道冷却输送工艺,管道—冻土水、热、力耦合计算,压气站失效后下游管道最低金属温度超限,基于应力设计局限、敷设方式单一、管道运营期监测系统可靠性等冻土区天然气管道特有的技术难题探讨,初步给出相应的解决方案构想,希望能够为冻土区天然气管道建设提供新的思路。
多年冻土区油气管道工程在许多方面都有别于常温地区的油气管道工程,如偏僻的地理位置和敏感脆弱的环境,更重要是其特殊的气候、水文地质和工程地质条件以及冻融岩土灾害等条件。这使得管道设计、建设、运营、维抢和管道系统安全以及完整性管理等方面面临一系列的特殊难题。不同于已建成并运营至今的美国阿拉斯加(Alyeska)原油管道、加拿大罗曼井(Norman Wells)原油管道、中俄原油管道(漠河—大庆段)和格尔木—拉萨成品油管道,多年冻土区的天然气管道在输运介质、输送温度、环保要求等方面和输油管道有很大差异,将面临一系列新问题和新挑战。通过对多年冻土区天然气管道冷却输送工艺,管道—冻土水、热、力耦合计算,压气站失效后下游管道最低金属温度超限,基于应力设计局限、敷设方式单一、管道运营期监测系统可靠性等冻土区天然气管道特有的技术难题探讨,初步给出相应的解决方案构想,希望能够为冻土区天然气管道建设提供新的思路。
多年冻土区油气管道工程在许多方面都有别于常温地区的油气管道工程,如偏僻的地理位置和敏感脆弱的环境,更重要是其特殊的气候、水文地质和工程地质条件以及冻融岩土灾害等条件。这使得管道设计、建设、运营、维抢和管道系统安全以及完整性管理等方面面临一系列的特殊难题。不同于已建成并运营至今的美国阿拉斯加(Alyeska)原油管道、加拿大罗曼井(Norman Wells)原油管道、中俄原油管道(漠河—大庆段)和格尔木—拉萨成品油管道,多年冻土区的天然气管道在输运介质、输送温度、环保要求等方面和输油管道有很大差异,将面临一系列新问题和新挑战。通过对多年冻土区天然气管道冷却输送工艺,管道—冻土水、热、力耦合计算,压气站失效后下游管道最低金属温度超限,基于应力设计局限、敷设方式单一、管道运营期监测系统可靠性等冻土区天然气管道特有的技术难题探讨,初步给出相应的解决方案构想,希望能够为冻土区天然气管道建设提供新的思路。
多年冻土区油气管道工程在许多方面都有别于常温地区的油气管道工程,如偏僻的地理位置和敏感脆弱的环境,更重要是其特殊的气候、水文地质和工程地质条件以及冻融岩土灾害等条件。这使得管道设计、建设、运营、维抢和管道系统安全以及完整性管理等方面面临一系列的特殊难题。不同于已建成并运营至今的美国阿拉斯加(Alyeska)原油管道、加拿大罗曼井(Norman Wells)原油管道、中俄原油管道(漠河—大庆段)和格尔木—拉萨成品油管道,多年冻土区的天然气管道在输运介质、输送温度、环保要求等方面和输油管道有很大差异,将面临一系列新问题和新挑战。通过对多年冻土区天然气管道冷却输送工艺,管道—冻土水、热、力耦合计算,压气站失效后下游管道最低金属温度超限,基于应力设计局限、敷设方式单一、管道运营期监测系统可靠性等冻土区天然气管道特有的技术难题探讨,初步给出相应的解决方案构想,希望能够为冻土区天然气管道建设提供新的思路。
多年冻土区油气管道工程在许多方面都有别于常温地区的油气管道工程,如偏僻的地理位置和敏感脆弱的环境,更重要是其特殊的气候、水文地质和工程地质条件以及冻融岩土灾害等条件。这使得管道设计、建设、运营、维抢和管道系统安全以及完整性管理等方面面临一系列的特殊难题。不同于已建成并运营至今的美国阿拉斯加(Alyeska)原油管道、加拿大罗曼井(Norman Wells)原油管道、中俄原油管道(漠河—大庆段)和格尔木—拉萨成品油管道,多年冻土区的天然气管道在输运介质、输送温度、环保要求等方面和输油管道有很大差异,将面临一系列新问题和新挑战。通过对多年冻土区天然气管道冷却输送工艺,管道—冻土水、热、力耦合计算,压气站失效后下游管道最低金属温度超限,基于应力设计局限、敷设方式单一、管道运营期监测系统可靠性等冻土区天然气管道特有的技术难题探讨,初步给出相应的解决方案构想,希望能够为冻土区天然气管道建设提供新的思路。