共检索到 21

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

中国东北地区多年冻土是兴安 - (外)贝加尔型多年冻土的重要组成部分,兼具高纬度和高海拔冻土特征。多年冻土的存在和变化对区域寒区生态环境、水-碳循环、寒区工程设计和运行等均会产生直接影响。目前以热边界条件为基础的经验、半经验模型对多年冻土的分布面积存在高估,对气温以外的环境因素的影响考虑不足。为了更好刻画区域多年冻土的分布,在区域调查和数据耦合的基础上,获取区域多年冻土分布的地带性因素和非地带性因素的空间变化因素,采用增强回归树模拟分析,发现地带性因素:纬度、经度与海拔的贡献度分别为45.3%、42.4%、12.3%,非地带性因素:气温(包含冻结指数和融化指数)、降水、水土条件、积雪与植被的贡献度分别为46.4%、18.9%、13.1%、12.5%、9.1%。明晰了环境因素对兴安-(外)贝加尔型多年冻土的发育和变化的贡献。通过与分类回归决策树作对比,增强回归树模型的分类精度达到了0.91,使用增强回归树的方法建立了中国东北地区多年冻土分类模型,模拟出兴安-(外)贝加尔型多年冻土空间分布图,为区域冻土和冻土相关的研究提供数据支持和参考。

期刊论文 2024-06-25

中国东北地区多年冻土是兴安 - (外)贝加尔型多年冻土的重要组成部分,兼具高纬度和高海拔冻土特征。多年冻土的存在和变化对区域寒区生态环境、水-碳循环、寒区工程设计和运行等均会产生直接影响。目前以热边界条件为基础的经验、半经验模型对多年冻土的分布面积存在高估,对气温以外的环境因素的影响考虑不足。为了更好刻画区域多年冻土的分布,在区域调查和数据耦合的基础上,获取区域多年冻土分布的地带性因素和非地带性因素的空间变化因素,采用增强回归树模拟分析,发现地带性因素:纬度、经度与海拔的贡献度分别为45.3%、42.4%、12.3%,非地带性因素:气温(包含冻结指数和融化指数)、降水、水土条件、积雪与植被的贡献度分别为46.4%、18.9%、13.1%、12.5%、9.1%。明晰了环境因素对兴安-(外)贝加尔型多年冻土的发育和变化的贡献。通过与分类回归决策树作对比,增强回归树模型的分类精度达到了0.91,使用增强回归树的方法建立了中国东北地区多年冻土分类模型,模拟出兴安-(外)贝加尔型多年冻土空间分布图,为区域冻土和冻土相关的研究提供数据支持和参考。

期刊论文 2024-06-25

多年冻土活动层内部冰-水相变会导致多年冻土地表出现季节性的冻胀和融沉,而其上限处地下冰融化将引起地表的长期沉降,因此揭示地表形变的季节和长期变化规律可为多年冻土变化研究提供新的视角和方法。本文以青藏高原多年冻土区北界(西大滩—昆仑垭口)为研究区,利用C波段降轨Sentinel-1数据,采用SBAS-InSAR技术获取该地区多年冻土2014—2020年的地表形变时间序列结果,并基于长期形变速率和季节性形变量探讨了该地区的多年冻土形变规律。结果表明:在多年冻土北界西大滩沟谷地区,不连续多年冻土区形变空间差异较大,多年冻土区的长期沉降速率和季节性的形变量高于季节冻土区。此外,高温多年冻土地表沉降比低温多年冻土更为显著,形变空间分布特征与地貌单元紧密联系。与西大滩谷地相比,昆仑山垭口地区和楚玛尔河高平原区域的长期形变速率与季节性形变量都明显增大。同时热融湖塘的形成过程与地表形变有着直接的关联,在热融湖塘发展早期,地下冰融化使得区域季节性形变量增大,随着热融湖塘扩张,区域长期沉降速率加剧,热融湖塘进一步发展后,区域季节性形变量可能降低。

期刊论文 2024-01-16

多年冻土活动层内部冰-水相变会导致多年冻土地表出现季节性的冻胀和融沉,而其上限处地下冰融化将引起地表的长期沉降,因此揭示地表形变的季节和长期变化规律可为多年冻土变化研究提供新的视角和方法。本文以青藏高原多年冻土区北界(西大滩—昆仑垭口)为研究区,利用C波段降轨Sentinel-1数据,采用SBAS-InSAR技术获取该地区多年冻土2014—2020年的地表形变时间序列结果,并基于长期形变速率和季节性形变量探讨了该地区的多年冻土形变规律。结果表明:在多年冻土北界西大滩沟谷地区,不连续多年冻土区形变空间差异较大,多年冻土区的长期沉降速率和季节性的形变量高于季节冻土区。此外,高温多年冻土地表沉降比低温多年冻土更为显著,形变空间分布特征与地貌单元紧密联系。与西大滩谷地相比,昆仑山垭口地区和楚玛尔河高平原区域的长期形变速率与季节性形变量都明显增大。同时热融湖塘的形成过程与地表形变有着直接的关联,在热融湖塘发展早期,地下冰融化使得区域季节性形变量增大,随着热融湖塘扩张,区域长期沉降速率加剧,热融湖塘进一步发展后,区域季节性形变量可能降低。

期刊论文 2024-01-16
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共21条,3页