由基础病害造成的多年冻土区结构或构件失效将对林区生态安全构成一定威胁,为此通过对东北多年冻土区京漠线及中俄原油管道沿线附近林区的杆塔基础进行实地调查,分析总结其主要病害特征及现有防治措施并提出改进建议。调查结果表明,出现冻拔病害的输电线铁塔基础占18.1%,包括均匀冻拔(8.5%)和不均匀冻拔(9.6%),而出现融沉病害的基础仅占3.7%;混凝土基础表面出现裂缝(2.7%)、剥落(2.7%)、裂纹(4.3%)、侵蚀(5.9%)、倾斜(3.7%)和压裂(0.5%)等病害;基础不均匀冻拔与倾斜对铁塔安全影响较大;混凝土保护帽冻害严重,主要表现为裂缝(15.4%)、剥落(8.5%)、裂纹(15.4%)和侵蚀(58%);冻拔和冻裂也是造成线杆倾斜和断裂倒塌的主要原因。针对以上基础病害问题,建议对冻土区域内的工程结构进行长期跟踪监测并完善改进现有处置措施。调查结果可为多年冻土区基础设施的设计、建造及病害防治策略提供重要的参考和借鉴,以期减弱工程对自然林区生态环境的影响。
由基础病害造成的多年冻土区结构或构件失效将对林区生态安全构成一定威胁,为此通过对东北多年冻土区京漠线及中俄原油管道沿线附近林区的杆塔基础进行实地调查,分析总结其主要病害特征及现有防治措施并提出改进建议。调查结果表明,出现冻拔病害的输电线铁塔基础占18.1%,包括均匀冻拔(8.5%)和不均匀冻拔(9.6%),而出现融沉病害的基础仅占3.7%;混凝土基础表面出现裂缝(2.7%)、剥落(2.7%)、裂纹(4.3%)、侵蚀(5.9%)、倾斜(3.7%)和压裂(0.5%)等病害;基础不均匀冻拔与倾斜对铁塔安全影响较大;混凝土保护帽冻害严重,主要表现为裂缝(15.4%)、剥落(8.5%)、裂纹(15.4%)和侵蚀(58%);冻拔和冻裂也是造成线杆倾斜和断裂倒塌的主要原因。针对以上基础病害问题,建议对冻土区域内的工程结构进行长期跟踪监测并完善改进现有处置措施。调查结果可为多年冻土区基础设施的设计、建造及病害防治策略提供重要的参考和借鉴,以期减弱工程对自然林区生态环境的影响。
由基础病害造成的多年冻土区结构或构件失效将对林区生态安全构成一定威胁,为此通过对东北多年冻土区京漠线及中俄原油管道沿线附近林区的杆塔基础进行实地调查,分析总结其主要病害特征及现有防治措施并提出改进建议。调查结果表明,出现冻拔病害的输电线铁塔基础占18.1%,包括均匀冻拔(8.5%)和不均匀冻拔(9.6%),而出现融沉病害的基础仅占3.7%;混凝土基础表面出现裂缝(2.7%)、剥落(2.7%)、裂纹(4.3%)、侵蚀(5.9%)、倾斜(3.7%)和压裂(0.5%)等病害;基础不均匀冻拔与倾斜对铁塔安全影响较大;混凝土保护帽冻害严重,主要表现为裂缝(15.4%)、剥落(8.5%)、裂纹(15.4%)和侵蚀(58%);冻拔和冻裂也是造成线杆倾斜和断裂倒塌的主要原因。针对以上基础病害问题,建议对冻土区域内的工程结构进行长期跟踪监测并完善改进现有处置措施。调查结果可为多年冻土区基础设施的设计、建造及病害防治策略提供重要的参考和借鉴,以期减弱工程对自然林区生态环境的影响。
作为东北多年冻土典型区,在气候变化和人类活动的共同影响下,大兴安岭山区多年冻土广泛快速退化,并导致了冻融灾害的频发。为系统地掌握该区工程融沉灾害分布及冻土退化情况,我们采用电阻率层析成像(electrical resistivity tomography, ERT)、浅层测温(0~2 m)和无人机航测等方法于2023年8—9月开展了大兴安岭多年冻土区融沉灾害调查。结果表明,沥青路面下融沉长度和融沉量最大且以路基融沉(包含路基倾斜和波浪路面)为主;混凝土路面以长大深纵裂为主,而林区铁路和中俄原油管道(China-Russia Crude Oil Pipelines, CRCOPs)以管基和施工运营作业带(right-of-way,或ROW)融沉和热喀斯特为主。融沉灾害地理分异特征明显:融沉灾害多发现于地势平坦且冻土保存条件较好的位置,融沉灾害的年平均地温与坡度呈正相关关系,且破坏长度与坡度呈负相关关系。阳坡的融沉灾害平均破坏长度大于阴坡破坏长度。低纬度的融沉灾害平均破坏长度大于高纬度破坏长度。年平均地温较低的草甸土和森林土的融沉灾害平均破坏长度大于年平均地温较高的暗棕壤融沉灾害的破坏长度...
作为东北多年冻土典型区,在气候变化和人类活动的共同影响下,大兴安岭山区多年冻土广泛快速退化,并导致了冻融灾害的频发。为系统地掌握该区工程融沉灾害分布及冻土退化情况,我们采用电阻率层析成像(electrical resistivity tomography, ERT)、浅层测温(0~2 m)和无人机航测等方法于2023年8—9月开展了大兴安岭多年冻土区融沉灾害调查。结果表明,沥青路面下融沉长度和融沉量最大且以路基融沉(包含路基倾斜和波浪路面)为主;混凝土路面以长大深纵裂为主,而林区铁路和中俄原油管道(China-Russia Crude Oil Pipelines, CRCOPs)以管基和施工运营作业带(right-of-way,或ROW)融沉和热喀斯特为主。融沉灾害地理分异特征明显:融沉灾害多发现于地势平坦且冻土保存条件较好的位置,融沉灾害的年平均地温与坡度呈正相关关系,且破坏长度与坡度呈负相关关系。阳坡的融沉灾害平均破坏长度大于阴坡破坏长度。低纬度的融沉灾害平均破坏长度大于高纬度破坏长度。年平均地温较低的草甸土和森林土的融沉灾害平均破坏长度大于年平均地温较高的暗棕壤融沉灾害的破坏长度...
作为东北多年冻土典型区,在气候变化和人类活动的共同影响下,大兴安岭山区多年冻土广泛快速退化,并导致了冻融灾害的频发。为系统地掌握该区工程融沉灾害分布及冻土退化情况,我们采用电阻率层析成像(electrical resistivity tomography, ERT)、浅层测温(0~2 m)和无人机航测等方法于2023年8—9月开展了大兴安岭多年冻土区融沉灾害调查。结果表明,沥青路面下融沉长度和融沉量最大且以路基融沉(包含路基倾斜和波浪路面)为主;混凝土路面以长大深纵裂为主,而林区铁路和中俄原油管道(China-Russia Crude Oil Pipelines, CRCOPs)以管基和施工运营作业带(right-of-way,或ROW)融沉和热喀斯特为主。融沉灾害地理分异特征明显:融沉灾害多发现于地势平坦且冻土保存条件较好的位置,融沉灾害的年平均地温与坡度呈正相关关系,且破坏长度与坡度呈负相关关系。阳坡的融沉灾害平均破坏长度大于阴坡破坏长度。低纬度的融沉灾害平均破坏长度大于高纬度破坏长度。年平均地温较低的草甸土和森林土的融沉灾害平均破坏长度大于年平均地温较高的暗棕壤融沉灾害的破坏长度...
冻土作为冰冻圈重要的组成部分,其存在分布及水热状态受到多种因素的影响。除了纬度、海拔等,局地因素如植被类型、积雪、土壤水分等也在很大程度上影响冻土的变化。特别是位于欧亚大陆多年冻土南缘的兴安-贝加尔型多年冻土,其发育、保存和分布等状态特征与局地因素密不可分。本文结合40多个钻孔资料和现有研究成果,分析得出目前大兴安岭多年冻土温度和厚度总体上受纬度影响,由南往北随年平均气温降低,冻土温度由0℃降到-2.83℃,但局地因素的影响可使地温最低达-3.6℃;厚度范围为29~130 m,其中地温低、厚度大的多年冻土主要发育在谷底的塔头灌丛湿地区域。满归、根河、伊图里河、新林等地的监测数据表明,自2009年开始,大部分钻孔温度显示该区活动层减薄,浅层多年冻土地温降低,融区最大冻结深度加深,而深层多年冻土却呈升温趋势,零地温变化率位置则各不相同,推测这种情况与全球变暖间隙以及植被、积雪和人类活动等局地因素有关。本研究对理解高纬度多年冻土区的地温变化过程以及这些变化的驱动因素具有重要的科学价值,也会对区域经济可持续发展及应对冻土退化带来的问题起到积极作用。
冻土作为冰冻圈重要的组成部分,其存在分布及水热状态受到多种因素的影响。除了纬度、海拔等,局地因素如植被类型、积雪、土壤水分等也在很大程度上影响冻土的变化。特别是位于欧亚大陆多年冻土南缘的兴安-贝加尔型多年冻土,其发育、保存和分布等状态特征与局地因素密不可分。本文结合40多个钻孔资料和现有研究成果,分析得出目前大兴安岭多年冻土温度和厚度总体上受纬度影响,由南往北随年平均气温降低,冻土温度由0℃降到-2.83℃,但局地因素的影响可使地温最低达-3.6℃;厚度范围为29~130 m,其中地温低、厚度大的多年冻土主要发育在谷底的塔头灌丛湿地区域。满归、根河、伊图里河、新林等地的监测数据表明,自2009年开始,大部分钻孔温度显示该区活动层减薄,浅层多年冻土地温降低,融区最大冻结深度加深,而深层多年冻土却呈升温趋势,零地温变化率位置则各不相同,推测这种情况与全球变暖间隙以及植被、积雪和人类活动等局地因素有关。本研究对理解高纬度多年冻土区的地温变化过程以及这些变化的驱动因素具有重要的科学价值,也会对区域经济可持续发展及应对冻土退化带来的问题起到积极作用。
冻土作为冰冻圈重要的组成部分,其存在分布及水热状态受到多种因素的影响。除了纬度、海拔等,局地因素如植被类型、积雪、土壤水分等也在很大程度上影响冻土的变化。特别是位于欧亚大陆多年冻土南缘的兴安-贝加尔型多年冻土,其发育、保存和分布等状态特征与局地因素密不可分。本文结合40多个钻孔资料和现有研究成果,分析得出目前大兴安岭多年冻土温度和厚度总体上受纬度影响,由南往北随年平均气温降低,冻土温度由0℃降到-2.83℃,但局地因素的影响可使地温最低达-3.6℃;厚度范围为29~130 m,其中地温低、厚度大的多年冻土主要发育在谷底的塔头灌丛湿地区域。满归、根河、伊图里河、新林等地的监测数据表明,自2009年开始,大部分钻孔温度显示该区活动层减薄,浅层多年冻土地温降低,融区最大冻结深度加深,而深层多年冻土却呈升温趋势,零地温变化率位置则各不相同,推测这种情况与全球变暖间隙以及植被、积雪和人类活动等局地因素有关。本研究对理解高纬度多年冻土区的地温变化过程以及这些变化的驱动因素具有重要的科学价值,也会对区域经济可持续发展及应对冻土退化带来的问题起到积极作用。
优先流是水分沿特定通道快速迁移的现象,与土壤孔隙特性密切相关。在多年冻土区,浅表层优先流主要由降雨、融水及人类活动产生。野外观测研究发现,浅表层优先流对中俄原油管道沿线冻土稳定性构成影响,但相关研究甚少。本文聚焦于大兴安岭地区浅表层沉积物中常见的粉质黏土,通过室内显色示踪试验,引入四类优先流——随机与规则大孔隙优先流、有机质夹层中微裂隙优先流、标准砂/粉质砂土夹层中指状优先流及碎石夹层中的漏斗状优先流,分析其对大兴安岭粉质黏土冻融循环过程的影响。结果表明:与参照试样密实的粉质黏土试样相比,微裂隙和大孔隙优先流使试样冻结和融化时间分别增加65%~87%和39%~57%,最低温度降低0.4~2.5℃,稳定时间延长1.9~2.4倍,体积含水率提高18%~25%,着色率提升15%~56%,优先流指数高于参照试样48%以上。进一步分析发现,优先流类型、水传输效率及通道连通性显著影响冻融循环过程中的温度与水分分布。本研究可为应对气候暖湿变化下冻土退化及管道维护提供重要科学依据。