共检索到 8

为了掌握大直径盾构始发段地层冻结过程中的冻胀变形规律及其对周围环境的影响特征,对上海上中路越江隧道盾构始发冻结工程地层温度、冻胀力及冻胀变形进行现场监测,获得了冻结施工过程中地层内部温度和冻胀力的演变特征,分析了地层及结构物的冻胀变形影响规律。研究结果表明:冻结范围地层全部形成冻土后才会引起地层出现明显变形,积极冻结期间以地层水平方向变形为主,而稳定冻结阶段主要表现为竖向变形;地层内部竖向变形随着埋深增加而线性增大,冻结45 d时深度为16 m处地层竖向最大变形达到88.2 mm,而对应位置地表抬升位移仅为55.4 mm;地层水平变形沿深度方向呈拱形分布,埋深为8 m位置的水平变形最大,冻结45 d时最大变形量为88.3 mm;在冻结过程中,冻结范围两侧最大地表位移达到102.6 mm,而对应位置行车轨道基础位移仅为25.9 mm,约是相应位置地表位移的1/4。地层温度变化及压缩作用会明显影响地层内部冻胀变形过程,而地层变形也会抑制冻结帷幕内部冻胀力的增长幅度。

期刊论文 2025-02-26

为了掌握大直径盾构始发段地层冻结过程中的冻胀变形规律及其对周围环境的影响特征,对上海上中路越江隧道盾构始发冻结工程地层温度、冻胀力及冻胀变形进行现场监测,获得了冻结施工过程中地层内部温度和冻胀力的演变特征,分析了地层及结构物的冻胀变形影响规律。研究结果表明:冻结范围地层全部形成冻土后才会引起地层出现明显变形,积极冻结期间以地层水平方向变形为主,而稳定冻结阶段主要表现为竖向变形;地层内部竖向变形随着埋深增加而线性增大,冻结45 d时深度为16 m处地层竖向最大变形达到88.2 mm,而对应位置地表抬升位移仅为55.4 mm;地层水平变形沿深度方向呈拱形分布,埋深为8 m位置的水平变形最大,冻结45 d时最大变形量为88.3 mm;在冻结过程中,冻结范围两侧最大地表位移达到102.6 mm,而对应位置行车轨道基础位移仅为25.9 mm,约是相应位置地表位移的1/4。地层温度变化及压缩作用会明显影响地层内部冻胀变形过程,而地层变形也会抑制冻结帷幕内部冻胀力的增长幅度。

期刊论文 2025-02-26

为了掌握大直径盾构始发段地层冻结过程中的冻胀变形规律及其对周围环境的影响特征,对上海上中路越江隧道盾构始发冻结工程地层温度、冻胀力及冻胀变形进行现场监测,获得了冻结施工过程中地层内部温度和冻胀力的演变特征,分析了地层及结构物的冻胀变形影响规律。研究结果表明:冻结范围地层全部形成冻土后才会引起地层出现明显变形,积极冻结期间以地层水平方向变形为主,而稳定冻结阶段主要表现为竖向变形;地层内部竖向变形随着埋深增加而线性增大,冻结45 d时深度为16 m处地层竖向最大变形达到88.2 mm,而对应位置地表抬升位移仅为55.4 mm;地层水平变形沿深度方向呈拱形分布,埋深为8 m位置的水平变形最大,冻结45 d时最大变形量为88.3 mm;在冻结过程中,冻结范围两侧最大地表位移达到102.6 mm,而对应位置行车轨道基础位移仅为25.9 mm,约是相应位置地表位移的1/4。地层温度变化及压缩作用会明显影响地层内部冻胀变形过程,而地层变形也会抑制冻结帷幕内部冻胀力的增长幅度。

期刊论文 2025-02-26

为了掌握大直径盾构始发段地层冻结过程中的冻胀变形规律及其对周围环境的影响特征,对上海上中路越江隧道盾构始发冻结工程地层温度、冻胀力及冻胀变形进行现场监测,获得了冻结施工过程中地层内部温度和冻胀力的演变特征,分析了地层及结构物的冻胀变形影响规律。研究结果表明:冻结范围地层全部形成冻土后才会引起地层出现明显变形,积极冻结期间以地层水平方向变形为主,而稳定冻结阶段主要表现为竖向变形;地层内部竖向变形随着埋深增加而线性增大,冻结45 d时深度为16 m处地层竖向最大变形达到88.2 mm,而对应位置地表抬升位移仅为55.4 mm;地层水平变形沿深度方向呈拱形分布,埋深为8 m位置的水平变形最大,冻结45 d时最大变形量为88.3 mm;在冻结过程中,冻结范围两侧最大地表位移达到102.6 mm,而对应位置行车轨道基础位移仅为25.9 mm,约是相应位置地表位移的1/4。地层温度变化及压缩作用会明显影响地层内部冻胀变形过程,而地层变形也会抑制冻结帷幕内部冻胀力的增长幅度。

期刊论文 2025-02-26

为了掌握大直径盾构始发段地层冻结过程中的冻胀变形规律及其对周围环境的影响特征,对上海上中路越江隧道盾构始发冻结工程地层温度、冻胀力及冻胀变形进行现场监测,获得了冻结施工过程中地层内部温度和冻胀力的演变特征,分析了地层及结构物的冻胀变形影响规律。研究结果表明:冻结范围地层全部形成冻土后才会引起地层出现明显变形,积极冻结期间以地层水平方向变形为主,而稳定冻结阶段主要表现为竖向变形;地层内部竖向变形随着埋深增加而线性增大,冻结45 d时深度为16 m处地层竖向最大变形达到88.2 mm,而对应位置地表抬升位移仅为55.4 mm;地层水平变形沿深度方向呈拱形分布,埋深为8 m位置的水平变形最大,冻结45 d时最大变形量为88.3 mm;在冻结过程中,冻结范围两侧最大地表位移达到102.6 mm,而对应位置行车轨道基础位移仅为25.9 mm,约是相应位置地表位移的1/4。地层温度变化及压缩作用会明显影响地层内部冻胀变形过程,而地层变形也会抑制冻结帷幕内部冻胀力的增长幅度。

期刊论文 2025-02-26

为了分析大直径盾构始发段冻结过程中冻胀对槽壁变形的影响,评价工作井的结构设计和稳定性,依托上海上中路越江隧道盾构始发段冻结加固工程,通过现场监测,分析深基坑槽壁承受冻胀力及变形的变化规律。研究结果表明:冻结初始阶段,冻胀作用主要引起地层压缩变形,当冻土温度降低到-20℃以下时,冻胀作用会引起深基坑槽壁水平位移明显增加,盾构始发前实测槽壁顶端最大位移达到28.76 mm;在冻土形成过程中,土体温度降低会明显提高冻土强度和弹性模量,使冻胀力明显增加,而最大冻胀力出现在冻土温度降低到-20℃以后,且随着埋深的增加而呈线性增大,施工中实测最大冻胀力由埋深6 m处的0.314 MPa增加到埋深20 m处的0.782 MPa,为相应深度地层压力的1.5~2.0倍,地层最大冻胀力与周围地层的约束作用紧密相关,冻土周围约束作用的变化会明显改变冻胀力及其分布。冻土冻胀力导致工作井底板上部和下部的槽壁结构分别向工作井内部和外部产生弯曲变形,施工中实测最大水平位移分别为2.11mm和3.62 mm,而冻结38 d后,槽壁水平位移的增加不仅会抑制冻胀力增长幅度,而且可以减小槽壁的弯曲变形。深基坑槽壁的水平变形...

期刊论文 2022-12-14

为了分析大直径盾构始发段冻结过程中冻胀对槽壁变形的影响,评价工作井的结构设计和稳定性,依托上海上中路越江隧道盾构始发段冻结加固工程,通过现场监测,分析深基坑槽壁承受冻胀力及变形的变化规律。研究结果表明:冻结初始阶段,冻胀作用主要引起地层压缩变形,当冻土温度降低到-20℃以下时,冻胀作用会引起深基坑槽壁水平位移明显增加,盾构始发前实测槽壁顶端最大位移达到28.76 mm;在冻土形成过程中,土体温度降低会明显提高冻土强度和弹性模量,使冻胀力明显增加,而最大冻胀力出现在冻土温度降低到-20℃以后,且随着埋深的增加而呈线性增大,施工中实测最大冻胀力由埋深6 m处的0.314 MPa增加到埋深20 m处的0.782 MPa,为相应深度地层压力的1.5~2.0倍,地层最大冻胀力与周围地层的约束作用紧密相关,冻土周围约束作用的变化会明显改变冻胀力及其分布。冻土冻胀力导致工作井底板上部和下部的槽壁结构分别向工作井内部和外部产生弯曲变形,施工中实测最大水平位移分别为2.11mm和3.62 mm,而冻结38 d后,槽壁水平位移的增加不仅会抑制冻胀力增长幅度,而且可以减小槽壁的弯曲变形。深基坑槽壁的水平变形...

期刊论文 2022-12-14

为了分析大直径盾构始发段冻结过程中冻胀对槽壁变形的影响,评价工作井的结构设计和稳定性,依托上海上中路越江隧道盾构始发段冻结加固工程,通过现场监测,分析深基坑槽壁承受冻胀力及变形的变化规律。研究结果表明:冻结初始阶段,冻胀作用主要引起地层压缩变形,当冻土温度降低到-20℃以下时,冻胀作用会引起深基坑槽壁水平位移明显增加,盾构始发前实测槽壁顶端最大位移达到28.76 mm;在冻土形成过程中,土体温度降低会明显提高冻土强度和弹性模量,使冻胀力明显增加,而最大冻胀力出现在冻土温度降低到-20℃以后,且随着埋深的增加而呈线性增大,施工中实测最大冻胀力由埋深6 m处的0.314 MPa增加到埋深20 m处的0.782 MPa,为相应深度地层压力的1.5~2.0倍,地层最大冻胀力与周围地层的约束作用紧密相关,冻土周围约束作用的变化会明显改变冻胀力及其分布。冻土冻胀力导致工作井底板上部和下部的槽壁结构分别向工作井内部和外部产生弯曲变形,施工中实测最大水平位移分别为2.11mm和3.62 mm,而冻结38 d后,槽壁水平位移的增加不仅会抑制冻胀力增长幅度,而且可以减小槽壁的弯曲变形。深基坑槽壁的水平变形...

期刊论文 2022-12-14
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页