桩基是多年冻土区最为常见的基础形式之一,降低桩基工程热扰动和提高桩基长期稳定性是冻土工程研究的重点。该文将太阳能制冷技术引入多年冻土区桩基工程,并开展主动冷却桩基现场试验与数值模拟研究。试验结果表明:温控桩壁的制冷温度可降至负温以下,运行3、 10和30 d的制冷半径分别达到0.65、 1.24和1.5 m以上;通过理论分析与数值反演估算温控桩的有效制冷功率约180 W,制冷因数为0.9。模拟结果表明:制冷时长越大,桩壁温度振幅越大,稳定温度越低;制冷时长6、 9和12 h/d所对应的桩壁温度分别可降至-2.39、-3.48和-4.45℃; 10 a后的影响半径分别超出6.68、 8.34和9.46 m;温控桩服役10 a后停止运行,桩周冻土仍可以在2~4 a内处于低温稳定状态。
确保多年冻土地基的长期热稳定仍然是当前冻土学科研究的重点和难点。科研人员长期致力于冻土工程关键技术的研究,研发了维护多年冻土地基热稳定的太阳能制冷技术及太阳能制冷装置,以太阳能热能为动力,实现制冷装置不分季节的全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀。现场试验研究表明:采用该技术及制冷装置后,年均地温较天然年均地温有较大幅度的降低,降温幅度为-2.23-3.9℃,且呈逐年增大的趋势;多年冻土的上限埋深由2.0 m抬升至1.5 m;季节活动层中的制冷影响半径由0.76m扩大至2.56m,多年冻土层中的制冷影响半径最大达到了3.95 m;实际制冷量为所需估算制冷量的2.27倍。总体上,采用维护冻土地基热稳定的太阳能制冷技术及其制冷装置后,季节活动层和多年冻土层的温度大幅度降低,上限埋深明显抬升,有效地维护了多年冻土的热稳定,具有较大的研究价值和应用前景。
在青藏高原风火山多年冻土试验场,对太阳能制冷装置与热管制冷装置用于维护多年冻土地基热稳定的效果进行现场对比试验。结果表明:在同等试验条件下,太阳能制冷装置显现出了较强的工作性能和制冷效果;太阳能制冷装置能够以多年冻土区丰富的太阳光照为热源动力,使制冷装置不分季节全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀;太阳能制冷装置的年均地温降低幅度比热管制冷装置的大0.57~0.96℃,制冷影响半径比热管制冷装置的大0.13~0.87m,实际制冷量为热管制冷装置制冷量的1.97倍。