全球气候变暖趋势下,多年冻土地基的赋存环境发生变化,导致多年冻土区路基的下沉现象较为普遍,为保证多年冻土地基的稳定,急需新型技术以应对带来的多年冻土工程稳定性挑战。该文重点介绍太阳能吸附式制冷在维护多年冻土中的机理及作用,通过分析青藏高原丰富的太阳能资源,探讨太阳能吸附式制冷在保护多年冻土地基热稳定中的潜力。研究结果表明,太阳能吸附式制冷技术在多年冻土区能够充分利用丰富的太阳光照作为热源动力,实现持续制冷,有效保护冻土地基。该文还讨论太阳能热棒技术的现状和未来发展方向,指出其作为一种环保、节能的制冷方式,在应对全球气候变暖和保护寒区工程热稳定方面具有广阔的应用前景。
桩基是多年冻土区最为常见的基础形式之一,降低桩基工程热扰动和提高桩基长期稳定性是冻土工程研究的重点。该文将太阳能制冷技术引入多年冻土区桩基工程,并开展主动冷却桩基现场试验与数值模拟研究。试验结果表明:温控桩壁的制冷温度可降至负温以下,运行3、 10和30 d的制冷半径分别达到0.65、 1.24和1.5 m以上;通过理论分析与数值反演估算温控桩的有效制冷功率约180 W,制冷因数为0.9。模拟结果表明:制冷时长越大,桩壁温度振幅越大,稳定温度越低;制冷时长6、 9和12 h/d所对应的桩壁温度分别可降至-2.39、-3.48和-4.45℃; 10 a后的影响半径分别超出6.68、 8.34和9.46 m;温控桩服役10 a后停止运行,桩周冻土仍可以在2~4 a内处于低温稳定状态。
针对中国多年冻土区广泛面临的冻土退化和路基融沉问题,提出引入一种更具实时性和有效性的防治方法——制冷技术。应用理念为,通过制冷技术在暖季将热量由多年冻土逆向传递回大气环境,实时控制冻土的热量收支状态。对于制冷驱动源的分散供应,中国多年冻土区属于太阳能利用条件良好的Ⅰ类地区,太阳能制冷技术面向冻土保护具有季节匹配性、地域匹配性和技术匹配性等方面的适用性。设计与制作一种路基专用吸附式制冷管,包括集热/吸附段、冷凝段、蒸发制冷段等部分。装置工作原理为通过太阳能光热驱动吸附式制冷循环,以活性炭和甲醇为制冷工质对,利用太阳辐射的昼夜交替特征实现间歇式制冷。制冷性能试验表明,装置的制冷温度可达-2.9℃,平均温度为-1.5℃,可以有效地保护多年冻土。
针对路基的冻胀现象,结合可再生能源利用技术,提出一种更具实时性和有效性的路基防冻胀方法,即路基主动供热方法。基于太阳能和浅层地热能的资源性条件,设计了分别采用这2种可再生能源作为热源的路基专用供热系统,制作了样品并进行了性能验证试验。结果表明:采用可再生能源作为热源的路基供热方法可在冬季主动向路基输入热量来实时防控由气候引起的过冷状态;太阳能真空管集热技术和地源热泵技术具有小型化、高效化等有利于路基应用的优势,冻土区丰富的太阳能资源和浅层地热能资源可以解决热源的分散供应问题。所设计的2种路基专用供热系统均为小型集成化系统,适合采用分布式"孤岛"运行方式,路基专用太阳能供热系统的日均供热温度可达20~40℃,路基专用地源热泵系统可以自动化提供30℃、45℃、60℃等不同水平的日均供热温度,均可满足路基防冻胀要求。可再生能源供热技术可以为解决冻土区路基防冻胀问题提供一种新途径。
基于季节性冻土区路基冻胀特征及供热需求分析,设计1款采用太阳能主动供热的路基专用供热装置。通过模型试验分析装置供热温度、供热量、供热效率随太阳辐照量的变化规律,建立考虑纬度和日序数的供热温度预测公式。通过对路基长期供热效果的数值模拟分析,研究装置防冻胀效果。结果表明:路基专用供热装置供热温度随太阳辐照量的提高而增大,最高达60℃,平均范围在20~40℃,太阳能有效热利用率约为26%;供热温度与太阳辐照量呈3次多项式函数关系,供热温度计算式可预测装置应用于不同地区时的逐日平均供热温度;该装置在季节性冻土区对路基起到暖季预储热量和冬季实时补充热量的作用,可有效提高入冬时路基的抗冻胀能力,降低冻胀程度。
冻土退化及路基融沉病害是中国多年冻土区交通工程面临的关键障碍。基于制冷技术,提出一种更具实时性和有效性的多年冻土保护方法。通过多年冻土制冷需求分析、制冷方法对比、驱动源供应方法分析,提出太阳能光伏驱动压缩式制冷的节能方案。设计一款路基专用的一体化制冷系统,并从资源性、技术性、经济性等角度论证其实用性。研究结果表明:压缩式制冷系统的输出性能与结构形式可以有效应对多年冻土退化的大深度分布特征和冷负荷要求。青藏高原等多年冻土区的太阳辐照量充足,基于光伏发电技术可以解决路基沿线制冷驱动力的分散供应难题,太阳能制冷具有地域、季节匹配性好的优势。制冷组件包括压缩机、蒸发器、冷凝器和节流器等,其中功能部件蒸发器的结构形式为立式柱状螺旋形盘管。制冷系统可以预设不同的制冷温度和启停间隔,技术性和经济性条件良好。试验结果表明:装置在正温环境下的制冷温度约为-14℃,地层冷却半径在3.0 m以上;有效制冷系数随着周围土体温度的减小而逐渐降低,平均值在0.41以上。所提出的太阳能光伏压缩式制冷系统可为多年冻土区路基建设和运营保障提供一种新方法。
确保多年冻土地基的长期热稳定仍然是当前冻土学科研究的重点和难点。科研人员长期致力于冻土工程关键技术的研究,研发了维护多年冻土地基热稳定的太阳能制冷技术及太阳能制冷装置,以太阳能热能为动力,实现制冷装置不分季节的全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀。现场试验研究表明:采用该技术及制冷装置后,年均地温较天然年均地温有较大幅度的降低,降温幅度为-2.23-3.9℃,且呈逐年增大的趋势;多年冻土的上限埋深由2.0 m抬升至1.5 m;季节活动层中的制冷影响半径由0.76m扩大至2.56m,多年冻土层中的制冷影响半径最大达到了3.95 m;实际制冷量为所需估算制冷量的2.27倍。总体上,采用维护冻土地基热稳定的太阳能制冷技术及其制冷装置后,季节活动层和多年冻土层的温度大幅度降低,上限埋深明显抬升,有效地维护了多年冻土的热稳定,具有较大的研究价值和应用前景。
井房是以地下水为水源的灌溉工程建设中一个重要的部分,井房内通常安装水泵、配电柜、闸阀、变频器等设备。由于传统的砖混式井房不具备保温功能,极端气温对井房内的设备产生不利影响,甚至会造成设备损坏,缩短设备使用寿命。研发了一种新型的一体式保温井房,以太阳能为能源,利用碳热纤维对井房进行加热,井房外壁夹层中填充保温材料,安装基础采用泡沫板进行保温。大田试验表明,井房内外日均温差基本呈现抛物线分布,当井房外气温较高时,井房内升温值较小,当井房外气温较低时,井房内升温值较大,在冬季一体式保温井房内外日均升温幅度可达9℃左右。一体式保温井房使井房内在冬季升温明显,可以有效减少我国季节性冻土区井房内设备冻害发生。
在青藏高原风火山多年冻土试验场,对太阳能制冷装置与热管制冷装置用于维护多年冻土地基热稳定的效果进行现场对比试验。结果表明:在同等试验条件下,太阳能制冷装置显现出了较强的工作性能和制冷效果;太阳能制冷装置能够以多年冻土区丰富的太阳光照为热源动力,使制冷装置不分季节全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀;太阳能制冷装置的年均地温降低幅度比热管制冷装置的大0.57~0.96℃,制冷影响半径比热管制冷装置的大0.13~0.87m,实际制冷量为热管制冷装置制冷量的1.97倍。