在水利水电工程建设施工中,冻土季节的施工是一个不容忽视的问题,处理不当会引起地基不均匀沉降,从而严重影响结构物安全及整体性能。为确保工程质量和安全,通过研究有效的季节性冻土防治施工措施,来应对季节性冻土带来的挑战,保障结构物安全和整体结构性能的稳定。
在季节性冻土区,气候因素引起的土体季节性冻融对桩基础的水平承载影响显著,在地震等水平荷载作用下桩基础极易发生断桩等脆性破坏。为消除或减弱季节性冻融对桩基的影响,文中采用抗冻融且高阻尼的橡胶-砂胶结材料置换桩周表层土体,改善桩基的水平承载特性;结合美国阿拉斯加地区某实际工程桩,对季节性冻土区进行温度场模拟,建立桩-土相互作用有限元模型,对比分析置换前后桩基础的受力与变形,并对置换范围进行优化,得到最佳置换宽度和置换深度分别为1.0d、6.0d(d为桩基直径)。
季冻区条件下的膨胀土边坡因土体自身“遇水膨胀、失水收缩”特性,且受高寒地区环境威胁,渠道边坡极易发生表面开裂、滑塌等破坏现象。本文选取黑龙江省内典型膨胀土渠道,采用室内试验的方法,探究膨胀土的基本物理特性及膨胀性,揭示封闭系统下土体的冻胀变形规律,厘清含水率与冻胀率之间的关系。结果表明:该地区膨胀土为弱膨胀土,封闭系统下不同含水率的土样冻胀量随着含水率的增大不断升高,最大冻胀率为5.86%。本文研究成果可为膨胀土边坡稳定性治理提供一定参考。
[目的]季节冻土退化会直接影响生长季初期的水分补给,进而影响区域森林健康。然而,目前大兴安岭南段的冻土退化,特别是气候变化下冻土如何退化尚不清楚。[方法]在内蒙古赛罕乌拉国家级自然保护区长期实验森林中,定位观测2014—2022年气温、土壤温度、土壤体积含水量等环境因子,分析森林季节冻土退化特征。[结果]研究表明:大兴安岭南段气温加速上升,1997—2022年间年平均气温上升速率为0.42℃·(10 a)-1,比1973—1996年间的升温速率[0.34℃·(10 a)-1]加快了23.5%;且冻融期(当年11月—次年6月)平均气温上升速率更快[0.46℃·(10 a)-1]。土壤的冻融模式呈自上而下单向冻结,单向融化;冻结速率、融化速率随着土壤深度的增加而变快,在40~80 cm土层达到最大值(冻结速率2.23 cm·d-1、融化速率4.50 cm·d-1)。季节冻土持续退化,观测到的最大冻结深度由80 cm减少至40 cm;冻融期显著缩短,开始冻结时间推迟,完全融化时间提前...
季节性冻土的冻胀融沉影响当地建筑物与构筑物的结构安全,找到地温随时间的变化数据可推算时间域内冻胀融沉对地面建筑的影响规律.以大庆市非饱和冻土为例,基于热传导理论和非饱和土渗流理论,在原位地温监测数据的基础上,建立了冻土的含相变过程的热-流-固(THM)三场耦合数值模型.通过数值模拟结果与实测结果的比较验证了冻土模型的准确性.结果表明:地温随地表温度呈延时周期性变化,在地面以下2.0 m以内,深度每增加0.5 m,温度波峰和波谷日大约推迟30 d;冻结期持续时间影响冻结深度,从而对当地土的周期性冻胀量起决定性影响,冻结期内土的每年最大冻胀位移为30.0 mm左右,冻结期结束后地面高度将快速恢复到冻结期之前的水平,季冻区冻胀融沉敏感性建筑物及构筑物的基础施工时间选择在冻结期结束后2个月至冻结期开始前,可有效减少冻胀融沉危害,大庆及其他类似季节性冻土地区的土壤冻融和冻融过程中的水热迁移研究可作为借鉴.
为提升公路沥青路面设计水平,避免季节性冻土地区的沥青路面在重交通荷载作用下产生温缩开裂病害,影响行车安全性和舒适度。本文分析了季节性冻土地区重交通沥青路面的轴载计算方法、路面结构设计原则、沥青路面层数和层厚确定方法,并推荐了路面结构组合。同时,以某季节性冻土地区的公路为研究对象,分析了车辆轴载对路面弯沉、剪切力及基底拉应力的影响,以评价路面结构设计效果。
阿里机场是目前世界上海拔第三高的机场,其地下水埋深很浅、平均温度很低、地基土含盐量高,由此产生了机场建设领域独一无二的盐渍化季节性冻土问题。机场建设时期阿里机场采用了常规的钢围界+斜拉钢索围界方案,由于特殊的地质及气候条件,机场围界很快出现倾斜、破坏现象,对机场运营形成很大的安全隐患。本文根据阿里机场特点,自行设计出一种新型的围界类型,即块卵石石笼柔性基础+刀片刺网柔性上部结构+角钢固定和横向加强方案,多年实践表明该新型围界未见不良病害迹象,可作为高寒高海拔地区围界的备选方案。
文章使用数值模拟方法,结合ABAQUS有限元模拟分析手段,对某公路设置泡沫轻质混凝土保温层路基的温度场变化进行分析并处理,对泡沫混凝土应用在季节性冻土区公里路基工程的情况进行研究。结果显示,路基温度场分布不是和路基中心线呈轴对称分布,从路基中心线向左右两侧路肩保温效果逐渐降低,保温效果较低的位置主要为左右两侧路肩。将铺设长度设置为路基面+路肩下1/3路基边坡长度时,将会改变路基土中温度,并出现最高幅度的冻结线抬升。左侧路肩下部土体地温会随着泡沫混凝土保温层长度的增长而提高,同时后者还会提升冻深线。与此同时,左右路肩下部及路基中线土体冻结范围会随着路基面层铺设泡沫混凝土保温层厚度的增长而减小。按照路基边缘路肩向下延长1.35m的位置铺设泡沫混凝土保温层,厚度为75mm。该优化方案能够尽可能避免出现路面和路基的冻害,同时节约材料,成为同等地域环境下施工的有力支撑。
在季节性冻土地区建设光伏电站时,光伏支架基础易受冻胀影响不均匀抬升,造成上部支架及组件变形破坏。以辽宁省阜新市一光伏电站为例,对冻土地区光伏支架基础选型、设计及优化进行了探究,提出了减小桩身切向冻胀力的措施,明显减少了工程投资,保证了工程质量。