通过对南京典型粉质黏土?10℃冻土在不同围压、固结方式、应力路径条件下的三轴试验,分析不同因素对三轴强度影响,结果表明:最大轴向偏应力随围压增大而线性增大,且重塑粉质黏土冻土的最大轴向偏应力随围压的增大速度大于原状粉质黏土冻土的增大速度;固结方式对内摩擦角影响较大,对黏聚力影响不大,先等压排水固结再冻结试样强度会大幅度提高;强度和弹性模量受应力路径影响,其中常规加载应力路径强度及弹性模量要大于卸载应力路径强度及弹性模量;基于Duncan-Chang模型建立考虑围压影响的冻结粉质黏土本构模型,参数a、b与围压呈负相关,获得原状粉质黏土以及先等压排水固结再冻结、先等压不排水固结再冻结和先冻结后固结重塑粉质黏土的破坏比均值分别为0.87、0.89、0.93和0.87。
为研究复杂应力路径条件下冻土的力学特性,中国科学院冻土工程国家重点实验室与美国GCTS公司合作研发了新型冻土力学试验设备——冻土空心圆柱仪(FHCA-300),该设备通过独立施加内围压、外围压、轴向荷载和扭矩来改变3个主应力的大小和方向,从而更为真实地模拟冻土在地震荷载、交通荷载等多向应力和主应力轴旋转等复杂应力路径下的应力-应变行为.详细介绍了该仪器各部分的组成、传感器和动荷载频率的选取过程以及目前可实现的具体试验类型.此外,着重介绍了冻土空心圆柱仪温度控制系统的设计原理,并且对其控温能力进行了验证,结果证明该系统可以达到预期的降温能力和控温要求.最后利用冻土空心圆柱仪进行了主应力轴静态旋转和循环旋转测试试验,验证了仪器实现包括主应力轴旋转在内的复杂应力路径的能力,初步试验结果表明该设备能够准确再现冻土在复杂应力路径条件下的力学行为和变形行为,可为系统开展冻土在复杂应力条件下的强度、变形特性和本构关系等研究提供技术手段.