近年来,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,开始影响青藏铁路路基安全。通过现场调查和统计分析,对青藏铁路多年冻土的热融湖塘发育状态和应对措施进行研究,研究结论包括,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,且离路基越来越近;青藏铁路路基两侧20 m范围内发育热融湖塘14处,部分热融湖塘已延伸至路基坡脚,严重影响地基多年冻土的稳定,进而影响路基稳定性;对影响铁路路基安全的2处典型热融湖塘进行分析,提出包括地表水、地下水双隔离及太阳能热棒增强冻土稳定性的措施。
近年来,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,开始影响青藏铁路路基安全。通过现场调查和统计分析,对青藏铁路多年冻土的热融湖塘发育状态和应对措施进行研究,研究结论包括,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,且离路基越来越近;青藏铁路路基两侧20 m范围内发育热融湖塘14处,部分热融湖塘已延伸至路基坡脚,严重影响地基多年冻土的稳定,进而影响路基稳定性;对影响铁路路基安全的2处典型热融湖塘进行分析,提出包括地表水、地下水双隔离及太阳能热棒增强冻土稳定性的措施。
近年来,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,开始影响青藏铁路路基安全。通过现场调查和统计分析,对青藏铁路多年冻土的热融湖塘发育状态和应对措施进行研究,研究结论包括,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,且离路基越来越近;青藏铁路路基两侧20 m范围内发育热融湖塘14处,部分热融湖塘已延伸至路基坡脚,严重影响地基多年冻土的稳定,进而影响路基稳定性;对影响铁路路基安全的2处典型热融湖塘进行分析,提出包括地表水、地下水双隔离及太阳能热棒增强冻土稳定性的措施。
近年来,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,开始影响青藏铁路路基安全。通过现场调查和统计分析,对青藏铁路多年冻土的热融湖塘发育状态和应对措施进行研究,研究结论包括,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,且离路基越来越近;青藏铁路路基两侧20 m范围内发育热融湖塘14处,部分热融湖塘已延伸至路基坡脚,严重影响地基多年冻土的稳定,进而影响路基稳定性;对影响铁路路基安全的2处典型热融湖塘进行分析,提出包括地表水、地下水双隔离及太阳能热棒增强冻土稳定性的措施。
近年来,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,开始影响青藏铁路路基安全。通过现场调查和统计分析,对青藏铁路多年冻土的热融湖塘发育状态和应对措施进行研究,研究结论包括,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,且离路基越来越近;青藏铁路路基两侧20 m范围内发育热融湖塘14处,部分热融湖塘已延伸至路基坡脚,严重影响地基多年冻土的稳定,进而影响路基稳定性;对影响铁路路基安全的2处典型热融湖塘进行分析,提出包括地表水、地下水双隔离及太阳能热棒增强冻土稳定性的措施。
近年来,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,开始影响青藏铁路路基安全。通过现场调查和统计分析,对青藏铁路多年冻土的热融湖塘发育状态和应对措施进行研究,研究结论包括,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,且离路基越来越近;青藏铁路路基两侧20 m范围内发育热融湖塘14处,部分热融湖塘已延伸至路基坡脚,严重影响地基多年冻土的稳定,进而影响路基稳定性;对影响铁路路基安全的2处典型热融湖塘进行分析,提出包括地表水、地下水双隔离及太阳能热棒增强冻土稳定性的措施。
近年来,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,开始影响青藏铁路路基安全。通过现场调查和统计分析,对青藏铁路多年冻土的热融湖塘发育状态和应对措施进行研究,研究结论包括,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,且离路基越来越近;青藏铁路路基两侧20 m范围内发育热融湖塘14处,部分热融湖塘已延伸至路基坡脚,严重影响地基多年冻土的稳定,进而影响路基稳定性;对影响铁路路基安全的2处典型热融湖塘进行分析,提出包括地表水、地下水双隔离及太阳能热棒增强冻土稳定性的措施。
近年来,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,开始影响青藏铁路路基安全。通过现场调查和统计分析,对青藏铁路多年冻土的热融湖塘发育状态和应对措施进行研究,研究结论包括,随着气候变暖和青藏高原降水的逐年增加,青藏铁路沿线的热融湖塘数量和面积也明显增加,且离路基越来越近;青藏铁路路基两侧20 m范围内发育热融湖塘14处,部分热融湖塘已延伸至路基坡脚,严重影响地基多年冻土的稳定,进而影响路基稳定性;对影响铁路路基安全的2处典型热融湖塘进行分析,提出包括地表水、地下水双隔离及太阳能热棒增强冻土稳定性的措施。
西藏是我国雪崩灾害多发和频发区,几乎每年都有雪崩致人伤亡的报道,而且在全球气候变暖背景下,雪崩灾害有逐年增加的趋势。念青唐古拉山及其东延部分和喜马拉雅山脉南坡是西藏雪崩发生频次最高的两个区域,高原内陆降水少,雪崩发育受到抑制,仅在高寒积雪山区和冰川作用区才有常年雪崩存在。西藏常年雪崩易发区面积非常有限,仅占高原总面积的1.6%。西藏雪崩主要发生在冬春两季,冬季雪崩易发区占全区面积的2.9%,春季上升至3.3%。雪崩是西藏高寒山区道路安全威胁最大的自然灾害之一,其中对川藏公路安久拉山至古乡段和中尼公路拉龙拉山至友谊桥段影响最大。由于灾害防治工程技术的发展及其在关键区域的应用,雪崩对道路交通安全的威胁大为降低。然而,以登山和休闲旅游为主的人类活动在高寒冰雪带的开展日益活跃,雪崩灾害造成的人员伤亡和经济损失呈逐年递增趋势。因此,除了对川藏公路和铁路段等关键区域继续加强工程防治之外,在重点区域雪崩灾害详查和区划的基础上,提升监测预警和预报服务水平是西藏今后雪崩防灾减灾工作的重点。
西藏是我国雪崩灾害多发和频发区,几乎每年都有雪崩致人伤亡的报道,而且在全球气候变暖背景下,雪崩灾害有逐年增加的趋势。念青唐古拉山及其东延部分和喜马拉雅山脉南坡是西藏雪崩发生频次最高的两个区域,高原内陆降水少,雪崩发育受到抑制,仅在高寒积雪山区和冰川作用区才有常年雪崩存在。西藏常年雪崩易发区面积非常有限,仅占高原总面积的1.6%。西藏雪崩主要发生在冬春两季,冬季雪崩易发区占全区面积的2.9%,春季上升至3.3%。雪崩是西藏高寒山区道路安全威胁最大的自然灾害之一,其中对川藏公路安久拉山至古乡段和中尼公路拉龙拉山至友谊桥段影响最大。由于灾害防治工程技术的发展及其在关键区域的应用,雪崩对道路交通安全的威胁大为降低。然而,以登山和休闲旅游为主的人类活动在高寒冰雪带的开展日益活跃,雪崩灾害造成的人员伤亡和经济损失呈逐年递增趋势。因此,除了对川藏公路和铁路段等关键区域继续加强工程防治之外,在重点区域雪崩灾害详查和区划的基础上,提升监测预警和预报服务水平是西藏今后雪崩防灾减灾工作的重点。