保证接触网支柱桩基础的冻拔稳定性是青藏铁路格拉段电气化改造工程建设中的关键问题之一,为研究不同截面形式桩(等截面圆形桩Z1、直锥柱形桩Z2及曲锥柱形桩Z3)的抗冻拔性能,以青藏线路基填料为试验土体,进行3个冻融循环的室内模型试验,得到冻融作用下接触网支柱桩基础的地温、桩顶位移及桩身应力的分布规律.试验结果表明:路基体的冻结(融化)是二维冻结(融化),接触网支柱桩基础附近的冻结深度约为30 cm;路肩处土体的竖向冻胀位移为4.30 mm,Z1的竖向冻拔量为0.26 mm,Z2与Z3的竖向冻拔量分别为Z1的46%、58%,3根桩的桩顶均产生约0.1 mm的水平位移;冻结过程中桩基整体受拉,冻深附近桩身轴力最大;切向冻胀应力的最大值出现在地表附近,曲锥柱形桩切向冻胀总力最小,抗冻拔效果最好.
保证接触网支柱桩基础的冻拔稳定性是青藏铁路格拉段电气化改造工程建设中的关键问题之一,为研究不同截面形式桩(等截面圆形桩Z1、直锥柱形桩Z2及曲锥柱形桩Z3)的抗冻拔性能,以青藏线路基填料为试验土体,进行3个冻融循环的室内模型试验,得到冻融作用下接触网支柱桩基础的地温、桩顶位移及桩身应力的分布规律.试验结果表明:路基体的冻结(融化)是二维冻结(融化),接触网支柱桩基础附近的冻结深度约为30 cm;路肩处土体的竖向冻胀位移为4.30 mm,Z1的竖向冻拔量为0.26 mm,Z2与Z3的竖向冻拔量分别为Z1的46%、58%,3根桩的桩顶均产生约0.1 mm的水平位移;冻结过程中桩基整体受拉,冻深附近桩身轴力最大;切向冻胀应力的最大值出现在地表附近,曲锥柱形桩切向冻胀总力最小,抗冻拔效果最好.
保证接触网支柱桩基础的冻拔稳定性是青藏铁路格拉段电气化改造工程建设中的关键问题之一,为研究不同截面形式桩(等截面圆形桩Z1、直锥柱形桩Z2及曲锥柱形桩Z3)的抗冻拔性能,以青藏线路基填料为试验土体,进行3个冻融循环的室内模型试验,得到冻融作用下接触网支柱桩基础的地温、桩顶位移及桩身应力的分布规律.试验结果表明:路基体的冻结(融化)是二维冻结(融化),接触网支柱桩基础附近的冻结深度约为30 cm;路肩处土体的竖向冻胀位移为4.30 mm,Z1的竖向冻拔量为0.26 mm,Z2与Z3的竖向冻拔量分别为Z1的46%、58%,3根桩的桩顶均产生约0.1 mm的水平位移;冻结过程中桩基整体受拉,冻深附近桩身轴力最大;切向冻胀应力的最大值出现在地表附近,曲锥柱形桩切向冻胀总力最小,抗冻拔效果最好.