为揭示寒区高铁无砟轨道混凝土在冻融循环环境和列车疲劳荷载下的服役性能变化规律,建立了“冻融循环+高频疲劳”的试验制度,以C60无砟轨道轨道板机制砂混凝土为研究对象,从损伤过程与能量传递的角度研究了冻融与疲劳耦合作用下的混凝土损伤机理,预测了寒区无砟轨道机制砂混凝土的疲劳寿命。结果表明,高速列车疲劳荷载会加剧无砟轨道混凝土的冻融损伤,混凝土在冻融循环300次后损伤加剧,其力学性能与疲劳性能均表现出加速下降的规律,600次冻融循环后疲劳寿命降低46.3%,刚度衰减幅度增加12.9%,冻融循环造成的缺陷连通是混凝土疲劳性能衰减的主要原因。混凝土主要通过变形所产生的变形能来耗散能量,冻融循环导致最大应变降低与残余应变增大使得混凝土变形性能降低。与常温下的疲劳性能相比,冻结阶段混凝土孔隙内冰有增强作用,且冻结状态下冰能加速内能耗散,因此疲劳损伤情况有所缓解。采用两参数Weibull函数对冻融破坏概率进行分析,建立了考虑疲劳损伤因子的混凝土“冻融+疲劳”服役状态下的寿命分析模型,预测了无砟轨道机制砂混凝土的服役寿命。
为揭示寒区高铁无砟轨道混凝土在冻融循环环境和列车疲劳荷载下的服役性能变化规律,建立了“冻融循环+高频疲劳”的试验制度,以C60无砟轨道轨道板机制砂混凝土为研究对象,从损伤过程与能量传递的角度研究了冻融与疲劳耦合作用下的混凝土损伤机理,预测了寒区无砟轨道机制砂混凝土的疲劳寿命。结果表明,高速列车疲劳荷载会加剧无砟轨道混凝土的冻融损伤,混凝土在冻融循环300次后损伤加剧,其力学性能与疲劳性能均表现出加速下降的规律,600次冻融循环后疲劳寿命降低46.3%,刚度衰减幅度增加12.9%,冻融循环造成的缺陷连通是混凝土疲劳性能衰减的主要原因。混凝土主要通过变形所产生的变形能来耗散能量,冻融循环导致最大应变降低与残余应变增大使得混凝土变形性能降低。与常温下的疲劳性能相比,冻结阶段混凝土孔隙内冰有增强作用,且冻结状态下冰能加速内能耗散,因此疲劳损伤情况有所缓解。采用两参数Weibull函数对冻融破坏概率进行分析,建立了考虑疲劳损伤因子的混凝土“冻融+疲劳”服役状态下的寿命分析模型,预测了无砟轨道机制砂混凝土的服役寿命。
为探究玄武岩纤维沥青混凝土在不同损伤程度及冻融循环、紫外辐射老化作用下的损伤自愈合性能,利用四点弯曲疲劳试验及扫描电子显微镜从宏、微观角度进行分析。通过对比分析试件愈合前后疲劳损伤速率vD及累计耗散能ECD分别得到相应的愈合系数RHI,结果表明:玄武岩纤维能提高普通基质沥青混凝土的损伤自愈合性能,其损伤愈合系数最大值为96%;在相同环境因素中,试件的损伤程度与愈合系数成反比;在相同的损伤程度下,冻融循环对试件的愈合性能影响最大,损伤愈合系数下降幅度最高达到4%;利用累计耗散能作为评价指标,可以更精确地表征沥青混凝土的损害自愈合性能。通过扫描电镜图像分析,从微观上解释了玄武岩纤维对于沥青混凝土紫外辐射老化及冻融作用前后自愈合性能的影响机理。
为探究玄武岩纤维沥青混凝土在不同损伤程度及冻融循环、紫外辐射老化作用下的损伤自愈合性能,利用四点弯曲疲劳试验及扫描电子显微镜从宏、微观角度进行分析。通过对比分析试件愈合前后疲劳损伤速率vD及累计耗散能ECD分别得到相应的愈合系数RHI,结果表明:玄武岩纤维能提高普通基质沥青混凝土的损伤自愈合性能,其损伤愈合系数最大值为96%;在相同环境因素中,试件的损伤程度与愈合系数成反比;在相同的损伤程度下,冻融循环对试件的愈合性能影响最大,损伤愈合系数下降幅度最高达到4%;利用累计耗散能作为评价指标,可以更精确地表征沥青混凝土的损害自愈合性能。通过扫描电镜图像分析,从微观上解释了玄武岩纤维对于沥青混凝土紫外辐射老化及冻融作用前后自愈合性能的影响机理。