针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。
针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。
针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。
针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。
为了提升季节性冻土区水文过程模拟精度,本研究耦合了WEP分布式架构与SHAW水热耦合机理,构建了WEP-SFZ水文模型。通过建立分层融合接口,在平面结构上保留WEP高程带计算单元并引入Campbell方程求解水热动态,在垂向结构上融合SHAW七层网格细化冻融相变过程,同时采用渐进式参数识别方法,实现了冻土活动层与产流机理的双向耦合。本研究以西流松花江流域为研究对象,结果表明:(1)土壤温度模拟Nash-Sutcliffe(NSE)效率系数达0.80~0.96,土壤含水量模拟均方根误差(RMSE)在0.03~0.10 m3/m3之间,径流模拟精度较原WEP模型显著提升。(2)1980—2020年间流域径流来源以降水为主。本研究成果可为寒区水资源调控和洪旱灾害防御提供理论支撑。
为了提升季节性冻土区水文过程模拟精度,本研究耦合了WEP分布式架构与SHAW水热耦合机理,构建了WEP-SFZ水文模型。通过建立分层融合接口,在平面结构上保留WEP高程带计算单元并引入Campbell方程求解水热动态,在垂向结构上融合SHAW七层网格细化冻融相变过程,同时采用渐进式参数识别方法,实现了冻土活动层与产流机理的双向耦合。本研究以西流松花江流域为研究对象,结果表明:(1)土壤温度模拟Nash-Sutcliffe(NSE)效率系数达0.80~0.96,土壤含水量模拟均方根误差(RMSE)在0.03~0.10 m3/m3之间,径流模拟精度较原WEP模型显著提升。(2)1980—2020年间流域径流来源以降水为主。本研究成果可为寒区水资源调控和洪旱灾害防御提供理论支撑。
为了提升季节性冻土区水文过程模拟精度,本研究耦合了WEP分布式架构与SHAW水热耦合机理,构建了WEP-SFZ水文模型。通过建立分层融合接口,在平面结构上保留WEP高程带计算单元并引入Campbell方程求解水热动态,在垂向结构上融合SHAW七层网格细化冻融相变过程,同时采用渐进式参数识别方法,实现了冻土活动层与产流机理的双向耦合。本研究以西流松花江流域为研究对象,结果表明:(1)土壤温度模拟Nash-Sutcliffe(NSE)效率系数达0.80~0.96,土壤含水量模拟均方根误差(RMSE)在0.03~0.10 m3/m3之间,径流模拟精度较原WEP模型显著提升。(2)1980—2020年间流域径流来源以降水为主。本研究成果可为寒区水资源调控和洪旱灾害防御提供理论支撑。
额尔齐斯河流域受地理条件的影响,流域内水文气象站点较少,基础资料匮乏,而融雪洪水在该流域的汛期及水资源管理上有着较大影响。本研究通过应用降水和气温的再分析产品及AVHRR积雪数据,利用K-means聚类法进行不同径流时期特点的划分,并在不同时期构建相应SRM+LSTM模型,并使用2009年数据及2023年实地观测的径流数据进行验证。结果表明:再分析产品CMFD能够较好地应用于额尔齐斯河流域,并能根据降水、温度、积雪及径流间的关系得到不同径流划分时期,即12月11日—次年4月10日为积雪退水期、4月11日—8月10日为融雪降水产流期、8月11日为降水产流期。SRM模型模拟效果较差,大部分径流纳什效率系数(NSE)<0;而SRM+LSTM模型能够较好地模拟该流域的不同时期的径流,决定系数R2均能达到0.5以上,纳什效率系数也能达到0.5以上,证明SRM+LSTM模型能够较好地应用于该地区,精度较高。
额尔齐斯河流域受地理条件的影响,流域内水文气象站点较少,基础资料匮乏,而融雪洪水在该流域的汛期及水资源管理上有着较大影响。本研究通过应用降水和气温的再分析产品及AVHRR积雪数据,利用K-means聚类法进行不同径流时期特点的划分,并在不同时期构建相应SRM+LSTM模型,并使用2009年数据及2023年实地观测的径流数据进行验证。结果表明:再分析产品CMFD能够较好地应用于额尔齐斯河流域,并能根据降水、温度、积雪及径流间的关系得到不同径流划分时期,即12月11日—次年4月10日为积雪退水期、4月11日—8月10日为融雪降水产流期、8月11日为降水产流期。SRM模型模拟效果较差,大部分径流纳什效率系数(NSE)<0;而SRM+LSTM模型能够较好地模拟该流域的不同时期的径流,决定系数R2均能达到0.5以上,纳什效率系数也能达到0.5以上,证明SRM+LSTM模型能够较好地应用于该地区,精度较高。
根据新疆和田地区河流域水文气象数据、DEM数据与MODIS数据的基础上,利用融雪径流模型进行和田河流域的融雪径流模拟研究。模型模拟结果显示,模型模拟得到的多年平均径流量为52.87×10~8 m3,与实际的年均径流量之间的误差为4.034%。拟合优度确定系数与体积差分别为0.927和11.011%。研究结果表明,相似流域参数推求结合SRM模型在和田河流域的融雪径流模拟中取得了较好效果,可用于区域水资源管理研究。