在列表中检索

共检索到 3

为确定动车组前端雪体与排雪阻力间的作用关系,指导积雪加载下动车组高效排雪设计。运用耦合Drucker-Prager失效准则定义下弹塑性积雪本构和光滑粒子流体力学仿真方法,分析积雪冲击时排障面板动态响应及积雪运动状态规律,研究排雪阻力与积雪深度、雪质特性、运行边界间变化规律。基于质量守恒和达朗贝尔原理构建动车组排雪阻力映射模型,揭示动车组前端雪阻形成机理。研究结果表明:设计运行速度下承受排雪载荷的排障面板处于弹性响应阶段,不会发生塑性破坏;排雪深度为10~410 mm、积雪密度为160~480 kg/m3、行驶速度为80~160 km/h时,排雪阻力与积雪厚度、密度均呈线性正相关关系,与排雪速度呈二次正相关关系;排雪阻力理论模型能够准确预测数值计算结果;相比摩擦阻力和切削阻力,动车组冲击过程中积雪运动状态改变是排雪阻力形成的主要原因。

期刊论文 2024-05-29

为确定动车组前端雪体与排雪阻力间的作用关系,指导积雪加载下动车组高效排雪设计。运用耦合Drucker-Prager失效准则定义下弹塑性积雪本构和光滑粒子流体力学仿真方法,分析积雪冲击时排障面板动态响应及积雪运动状态规律,研究排雪阻力与积雪深度、雪质特性、运行边界间变化规律。基于质量守恒和达朗贝尔原理构建动车组排雪阻力映射模型,揭示动车组前端雪阻形成机理。研究结果表明:设计运行速度下承受排雪载荷的排障面板处于弹性响应阶段,不会发生塑性破坏;排雪深度为10~410 mm、积雪密度为160~480 kg/m3、行驶速度为80~160 km/h时,排雪阻力与积雪厚度、密度均呈线性正相关关系,与排雪速度呈二次正相关关系;排雪阻力理论模型能够准确预测数值计算结果;相比摩擦阻力和切削阻力,动车组冲击过程中积雪运动状态改变是排雪阻力形成的主要原因。

期刊论文 2024-05-29

为确定动车组前端雪体与排雪阻力间的作用关系,指导积雪加载下动车组高效排雪设计。运用耦合Drucker-Prager失效准则定义下弹塑性积雪本构和光滑粒子流体力学仿真方法,分析积雪冲击时排障面板动态响应及积雪运动状态规律,研究排雪阻力与积雪深度、雪质特性、运行边界间变化规律。基于质量守恒和达朗贝尔原理构建动车组排雪阻力映射模型,揭示动车组前端雪阻形成机理。研究结果表明:设计运行速度下承受排雪载荷的排障面板处于弹性响应阶段,不会发生塑性破坏;排雪深度为10~410 mm、积雪密度为160~480 kg/m3、行驶速度为80~160 km/h时,排雪阻力与积雪厚度、密度均呈线性正相关关系,与排雪速度呈二次正相关关系;排雪阻力理论模型能够准确预测数值计算结果;相比摩擦阻力和切削阻力,动车组冲击过程中积雪运动状态改变是排雪阻力形成的主要原因。

期刊论文 2024-05-29
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页