季节性冻土地区,冬季土壤冻结后,其电阻率急剧增加,不仅导致接地电阻上升数倍,同时会引起变电站内部短路时流入地网的故障电流发生变化。文中研究了季节性冻土地区土壤冻结深度对地网分流系数的影响规律。首先建立了季节性冻土地区的土壤结构模型,根据土壤的冻结规律,改变土壤的结构与电阻率,仿真得到了不同情况下变电站地网入地短路电流的分配规律。研究发现:由于杆塔的接地体埋深要小于地网的埋深,杆塔接地装置受冻土影响更大,导致变电站分流系数急剧增加,甚至超过50%,使得原有地网设计无法满足安全标准;仅对地网增设垂直接地极降阻会导致其分流系数的增大,变电站进出线路的临近6~7基杆塔的接地是影响变电站分流的主要因素,因此可以通过对其增设垂直接地极或加大埋深的方式来降低地网分流系数,通过该方法可以提高季节性冻土地区地网的安全性能。
季节性冻土的融冻循环过程会导致土壤电阻率和冻土层分界面随季节变化,冬季输电线路杆塔地网接地电阻可能上升,甚至超过标准限定值,影响线路的安全稳定运行。为了研究季节性冻土因素对杆塔地网接地电阻的影响,仿真研究了冻土层结构及冻土层厚度对其接地电阻的影响,并采用柔性石墨和圆钢接地材料同沟敷设的方案对实际输电线路杆塔地网进行了改造,对比分析了接地电阻的差异。研究结果表明:在不同冻土层结构和冻土层厚度情况下,柔性石墨地网相比于圆钢地网,其接地电阻最大降阻率分别达到了18. 76%和23. 65%。研究成果可为季节性冻土环境下输电线路杆塔接地降阻提供参考。
冬季土壤冻结后,土壤电阻率急剧增加,而且冻土层土壤电阻率和深度随着土壤温度变化,不仅影响接触电压与跨步电压的值,同时还影响到跨步电压与接触电压的允许值。为了探究季节性冻土对变电站接地安全的影响,建立了季节性冻土地区的土壤模型,仿真分析研究了季节性冻土参数对变电站接地系统接地电阻、接触电压和跨步电压的影响规律;分析了不同情况下接地电阻、接触电压和跨步电压的最大允许安全值;最后研究了改善冻土地区接地安全性能的方法。研究发现:当冻土冻结深度小于地网埋深时,跨步电压与接触电压受到下层土壤电阻率影响,接地系统较为安全,冻土冻结深度超过地网埋深后接触电压与跨步电压急剧上升,超过安全值,此时通过增设垂直接地极可有效地降低接地电阻值,限制接触电压和跨步电压。
季节冻土将改变土壤模型,导致杆塔接地电阻和变电站接地电阻的变化,从而导致最大入地电流随季节变化。文章采用数值计算方法分析了存在季节冻土时变电站接地系统埋设深度、杆塔接地装置埋深、垂直接地极、局部冻土、变电站进出线回数等因素对变电站分流系数的影响。分析结果表明:存在季节冻土层时,如果冻土层的厚度超过接地网的埋深,将使最大入地短路电流增加;变电站进出线为10回时,变电站分流系数大约增加30%;接地网增加垂直接地极能够减轻季节冻土对分流系数的影响。