接地安全是电力系统安全稳定运行的根本保证之一,而接地电阻、接触电压和跨步电压是衡量接地网性能重要指标。一方面,本文搭建了双层接地网模型,采用四极法测量了不同土壤含水量的电阻率,探究不同降雨类型、不同雨水渗透深度情况下接地电阻、跨步电压和接触电压的变化规律,仿真表明降雨可以降低接地电阻和跨步电压,但在最初会导致接触电压略微增加;另一方面,土壤冻融均是从表层土壤开始,文中通过实验数据拟合出一定含水量条件下冻土温度与土壤电阻率的规律公式,并从冻土电阻率、冻结深度与解冻深度等不同角度,分析了土壤冻结融化时接地电阻,跨步电压和接触电压的变化趋势,结果表明季节性冻土在冻结深度超过地网埋设深度后会有极大的安全隐患。研究结论可为电力系统接地网设计提供一定的理论参考。
接地安全是电力系统安全稳定运行的根本保证之一,而接地电阻、接触电压和跨步电压是衡量接地网性能重要指标。一方面,本文搭建了双层接地网模型,采用四极法测量了不同土壤含水量的电阻率,探究不同降雨类型、不同雨水渗透深度情况下接地电阻、跨步电压和接触电压的变化规律,仿真表明降雨可以降低接地电阻和跨步电压,但在最初会导致接触电压略微增加;另一方面,土壤冻融均是从表层土壤开始,文中通过实验数据拟合出一定含水量条件下冻土温度与土壤电阻率的规律公式,并从冻土电阻率、冻结深度与解冻深度等不同角度,分析了土壤冻结融化时接地电阻,跨步电压和接触电压的变化趋势,结果表明季节性冻土在冻结深度超过地网埋设深度后会有极大的安全隐患。研究结论可为电力系统接地网设计提供一定的理论参考。
接地安全是电力系统安全稳定运行的根本保证之一,而接地电阻、接触电压和跨步电压是衡量接地网性能重要指标。一方面,本文搭建了双层接地网模型,采用四极法测量了不同土壤含水量的电阻率,探究不同降雨类型、不同雨水渗透深度情况下接地电阻、跨步电压和接触电压的变化规律,仿真表明降雨可以降低接地电阻和跨步电压,但在最初会导致接触电压略微增加;另一方面,土壤冻融均是从表层土壤开始,文中通过实验数据拟合出一定含水量条件下冻土温度与土壤电阻率的规律公式,并从冻土电阻率、冻结深度与解冻深度等不同角度,分析了土壤冻结融化时接地电阻,跨步电压和接触电压的变化趋势,结果表明季节性冻土在冻结深度超过地网埋设深度后会有极大的安全隐患。研究结论可为电力系统接地网设计提供一定的理论参考。
接地安全是电力系统安全稳定运行的根本保证之一,而接地电阻、接触电压和跨步电压是衡量接地网性能重要指标。一方面,本文搭建了双层接地网模型,采用四极法测量了不同土壤含水量的电阻率,探究不同降雨类型、不同雨水渗透深度情况下接地电阻、跨步电压和接触电压的变化规律,仿真表明降雨可以降低接地电阻和跨步电压,但在最初会导致接触电压略微增加;另一方面,土壤冻融均是从表层土壤开始,文中通过实验数据拟合出一定含水量条件下冻土温度与土壤电阻率的规律公式,并从冻土电阻率、冻结深度与解冻深度等不同角度,分析了土壤冻结融化时接地电阻,跨步电压和接触电压的变化趋势,结果表明季节性冻土在冻结深度超过地网埋设深度后会有极大的安全隐患。研究结论可为电力系统接地网设计提供一定的理论参考。
接地安全是电力系统安全稳定运行的根本保证之一,而接地电阻、接触电压和跨步电压是衡量接地网性能重要指标。一方面,本文搭建了双层接地网模型,采用四极法测量了不同土壤含水量的电阻率,探究不同降雨类型、不同雨水渗透深度情况下接地电阻、跨步电压和接触电压的变化规律,仿真表明降雨可以降低接地电阻和跨步电压,但在最初会导致接触电压略微增加;另一方面,土壤冻融均是从表层土壤开始,文中通过实验数据拟合出一定含水量条件下冻土温度与土壤电阻率的规律公式,并从冻土电阻率、冻结深度与解冻深度等不同角度,分析了土壤冻结融化时接地电阻,跨步电压和接触电压的变化趋势,结果表明季节性冻土在冻结深度超过地网埋设深度后会有极大的安全隐患。研究结论可为电力系统接地网设计提供一定的理论参考。
变电站接地系统是保证电网安全运行及站内电力设备安全的重要设施,其土壤电阻率的季节性变化将对运行人员安全、站内设备的耐受能力等方面带来一定的威胁。因此,本文针对季节性冻土地区接地系统的安全性展开研究,对确保冬季中的变电站安全运行具有关键的意义。本文通过电力接地系统分析软件CDEGS结合MATLAB编程对存在季节性冻土的北方某110kV变电站接地网的安全性进行了分析与研究,计算了土壤冻结形成的高电阻率地区在发生短路故障后的地网的工频接地电阻、二次电缆芯皮电位差以及跨步、接触电压等安全参数的变化规律,旨在明确处于冰冻土壤中的变电站接地系统安全性及其改进优化方案。
变电站接地系统是保证电网安全运行及站内电力设备安全的重要设施,其土壤电阻率的季节性变化将对运行人员安全、站内设备的耐受能力等方面带来一定的威胁。因此,本文针对季节性冻土地区接地系统的安全性展开研究,对确保冬季中的变电站安全运行具有关键的意义。本文通过电力接地系统分析软件CDEGS结合MATLAB编程对存在季节性冻土的北方某110kV变电站接地网的安全性进行了分析与研究,计算了土壤冻结形成的高电阻率地区在发生短路故障后的地网的工频接地电阻、二次电缆芯皮电位差以及跨步、接触电压等安全参数的变化规律,旨在明确处于冰冻土壤中的变电站接地系统安全性及其改进优化方案。
变电站接地系统是保证电网安全运行及站内电力设备安全的重要设施,其土壤电阻率的季节性变化将对运行人员安全、站内设备的耐受能力等方面带来一定的威胁。因此,本文针对季节性冻土地区接地系统的安全性展开研究,对确保冬季中的变电站安全运行具有关键的意义。本文通过电力接地系统分析软件CDEGS结合MATLAB编程对存在季节性冻土的北方某110kV变电站接地网的安全性进行了分析与研究,计算了土壤冻结形成的高电阻率地区在发生短路故障后的地网的工频接地电阻、二次电缆芯皮电位差以及跨步、接触电压等安全参数的变化规律,旨在明确处于冰冻土壤中的变电站接地系统安全性及其改进优化方案。
研究和测试表明,土壤凝结成冻土时,其电阻率可增加5~1000倍。在冬季,土壤由浅入深逐步形成冻土高阻层,直到最大冻结深度;在春季反之,冻土高阻层由表入里的消散。在这个周期变化的过程中,冻土深度内的土壤电阻率产生剧烈变化,对变电站接地网的性能产生动态、显著的不利影响,提高了GPR和降低了接触电压允许值。当前,在变电站接地的工程设计中,对此鲜有相关的研究和应用。廊坊柳林220 kV变电站作为重点工程,采用分层土壤模型等效实际冻土条件,首次对接地网的性能进行了工程量化的评估和校验。测试结果表明,采用分层土壤模型等效的方式是可行的,冻土校验和评估涉及安全性评估,是必要的。
研究和测试表明,土壤凝结成冻土时,其电阻率可增加5~1000倍。在冬季,土壤由浅入深逐步形成冻土高阻层,直到最大冻结深度;在春季反之,冻土高阻层由表入里的消散。在这个周期变化的过程中,冻土深度内的土壤电阻率产生剧烈变化,对变电站接地网的性能产生动态、显著的不利影响,提高了GPR和降低了接触电压允许值。当前,在变电站接地的工程设计中,对此鲜有相关的研究和应用。廊坊柳林220 kV变电站作为重点工程,采用分层土壤模型等效实际冻土条件,首次对接地网的性能进行了工程量化的评估和校验。测试结果表明,采用分层土壤模型等效的方式是可行的,冻土校验和评估涉及安全性评估,是必要的。