为研究冻融循环下纤维改良粉砂土路基的含水率、干密度、纤维掺量对土体热物理学特性的影响规律,通过开展室内导热系数测试试验,测得不同含水率、干密度、纤维掺量改良粉砂土的导热系数,分析不同因素对改良粉砂土导热系数的影响。结果表明,在干密度、纤维掺量以及冻融次数相同的情况下,改良路基土的导热系数随含水率的增大呈非线性增长,且当含水率超过12%时,增长速率减小,试验范围内导热系数为0.39~1.32 W/(m·K);在含水率、纤维掺量以及冻融次数相同的情况下,改良路基土的导热系数随干密度的增大呈指数增长,且当干密度超过1.9 g/cm3时,增长速率减小,试验范围内导热系数为0.45~1.87 W/(m·K);在含水率、干密度以及冻融次数相同的情况下,改良路基土的导热系数随纤维掺量的增大线性减小,试验范围内导热系数为0.59~1.3 W/(m·K);在含水率、干密度以及纤维掺量相同的情况下,改良路基土的导热系数随冻融循环次数的增大线性减小,试验范围内导热系数在0.48~1.01 W/(m·K)。研究成果可为西部粉砂土分布地区工程建设提供参考。
基于季节冻土区冻融循环条件,利用高低温交变试验箱与静态应变仪,进行了不同配比水泥改良路基土的温缩试验研究。结果表明:水泥改良土的温缩应变呈"螺旋式"变化,温缩应变随水泥掺量增加逐渐增加,初始温度循环对水泥改良土影响较大,经历三次温度循环后水泥土温缩应变特性已相当明显且变化规律趋于稳定,土体内部物化反应也达到平稳,但多次循环后掺量6%的水泥土内部反应机理较其他掺量不同,且对温度变化的敏感度较低,温缩应变与系数相对较小。在冀北地区,掺量6%水泥土可用作季节冻土区道路的基层或底基层,为水泥土在季节冻土区的应用提供了试验依据。
为掌握水泥改良土杯型冻土壁的解冻规律,以南京地铁10号线过江隧道盾构出洞水平冻结加固工程为例,对水泥改良土杯型冻土壁融化温度场进行了三维数值模拟,并研究了导热系数、比热容、相变潜热等因素变化对融化温度场的影响规律。结果表明:冻结水泥土解冻速度受初始温度影响较小,受冻土位置影响较大;解冻过程中,冻土壁外侧1 m处的非冻结土温度先降后升,冻土壁外侧3~7 m处土体温度始终呈下降趋势;随着导热系数减小、相变潜热增大、比热容增大,解冻时间延长;比热容对冻结水泥土解冻过程的影响主要体现在升温阶段,相变潜热主要影响冻土相变阶段,导热系数既影响升温阶段又影响相变阶段。