为研究机器学习(Machine Learning,ML)方法在冻土力学参数预测中的性能及其应用,本文采用4种ML算法(DT、MLP、SVM以及GP),基于116组冻结黏土定向剪切试验数据,以中主应力系数b、主应力轴方向角α、平均主应力p和温度T为输入,以冻结黏土的力学参数(应力应变曲线(Stress-Strain Curve,SSC)模式和破坏强度qd)为输出,建立预测模型。通过交叉验证以及与补充试验数据的对比,评估了ML模型的预测性能。并基于最优ML模型分析在多输入参数空间下冻结黏土力学参数的分布,最后结合模型的可解释性(SHAP方法)进行参数敏感性分析。结果表明,基于ML方法可准确预测出冻结黏土的SSC模式和qd,其中MLP模型的预测表现最优;ML预测模型可以在多参数空间下模拟出冻结黏土SSC模式和qd与各输入参数之间的复杂非线性关系;通过SHAP方法有效量化了四种输入参数对于冻结黏土力学参数的影响程度:对于SSC模式的影响程度从大到小为α、p、T和b,对于qd的影响程度从大到小为T、b、α和p...
冻胀是影响冻土工程稳定性的关键因素之一,而水分迁移是决定冻胀等级的核心。为明确水头差对水分迁移及冻胀的影响规律,在传统无压补水的单向冻结试验基础上,引入水头差形成水头差,进行了4组不同水头差下的单向冻结试验。试验结果表明:当水头差从0增大至0.5m、1.0m、2.0m时,补水量增幅分别为29.56%、42.51%、79.87%,冻胀率增幅为14.14%、21.12%和72.80%。在水头差作用下,各位置的土体含水率均有所增大,冻结锋面处含水率最大增幅达到50%。水头差对水分迁移及冻胀有明显的促进作用,反映了采用单一细粒含量评价冻胀敏感性的不足。因此,应根据土体所处环境,合理评价冻胀敏感性,为冻土工程水害治理提供参考。
基于桥墩基础的减冲防护原理,设计了一种稳定性高的防冲装置—导流体。为探究导流体对桥墩局部冲刷的防冲效果,在不同流速及覆盖条件下,采用不同形状的导流体进行模型试验。通过分析冲刷特性、最大冲坑深度、下潜流水力特性、冲坑体积和冲坑面积,选出最优形状和最佳安装位置。试验结果表明:当导流体底边高8 cm、安装位置在墩前2d时,防冲效果最好;当流速为0.32 m/s时,安装导流体可使桥墩最大冲深减小59.3%,冲坑体积减小76.1%,冲坑面积减小79.0%,下潜流流速及紊动强度明显减小。通过敏感性分析得出安装距离是影响导流体防冲效果的主要影响因素。
游客满意度是衡量旅游地竞争力的关键因素之一,已受到众多旅游研究者的关注。在其热点研究中,有关冰川旅游游客满意度及不同游客属性间满意度差异的研究鲜见。选取达古冰川与海螺沟冰川为研究区,通过对游客属性细分,运用模糊多准则决策法(F-MCDM)及引入需求弹性理论对冰川旅游游客满意度进行了综合评价和敏感性分析,探讨了提升冰川旅游游客满意度的对策建议。结果表明:达古冰川游客实际满意度总体高于海螺沟冰川,两地均以管理与服务的满意度最高,消费状况与交通的满意度最低。就游客属性的相对满意度而言,两地均呈现男性满意度高于女性,高消费游客满意度高于低消费游客,高忠诚度游客满意度高于低忠诚度游客;两地相对满意度的差异表现在年龄、受教育程度、客源地和到访次数方面。相较于达古冰川,海螺沟冰川满意度敏感性更高,同等改进力度下游客满意度的提高更为明显高效,就两地满意度敏感性最高的景观特色而言,达古冰川1%的改善将提升游客满意度0.30%,而海螺沟冰川可提升0.45%;对于不同游客属性的满意度敏感性,两地均以不愿推荐、不愿重游和未达到期望的游客最高。最后依据满意度敏感性分析结果,为两地冰川旅游发展提出了关键属性改进、...
针对近期高寒山区生态景观急剧变化、严重影响生态敏感性的问题,为了更好地评价和分析这种变化带来的一系列生态现象,选取大峡谷为研究区,利用面向对象的分类方法确定景观类型,以多样性指数、优势度指数、均匀度指数和聚合度指数等作为指标,对研究区的生态敏感性进行评价和分析。采用面向对象的分类方法最终得到10类景观类型的斑块共1 761个,其中林地景观和草地景观的面积占比最大,分别为48.84%和22.68%,冰雪/冰川景观的占比为17.39%。从景观指数来看,研究区景观多样性指数为1.374,优势度指数为0.982,均匀度指数为0.597,聚合度指数为97.374。可以看出,大峡谷研究区拥有较高的多样性,单一景观优势度相对较低,不同景观空间分配情况更好,总体上该区域景观以原始森林、高山草甸和冰川为主,人类活动干扰较小,并主要集中在河谷地带农田和草地的转换中。综合6类影响因子对大峡谷研究区生态敏感性进行加权分析,生态敏感性主要集中在中度和高度敏感区域,占比合计95.71%。中度敏感区域集中分布于河谷周边低海拔、低坡度区域,以水域、草地、灌木林为主;高度敏感区域集中分布于山地高海拔区域,以林地景观、冰...
针对季节冻土区路基填土春融时常处于强度不稳定的状态,根据季节冻土特性选取冻结温度、融化温度、围压、含水率4种影响因素,对张家口季节冻土区粉质黏土进行了模拟正融土的常规三轴试验,采用灰色关联分析法对试验结果进行分析,给出了4种影响因素对强度的敏感性排序。结果表明:含水率、融化温度、冻结温度的敏感性超过60%,需要重点考虑。9%含水率时,土样强度较高,发生脆性破坏,随着含水率的增大,向延性破坏转变;融化温度主要影响土体剪切过程中融化速度和排水固结的速度,温度越低,土样强度越高;冻结温度通过改变土颗粒和冰晶体的胶结程度来影响强度,冻结温度越低,胶结作用越强,但低于-10℃后,强度增长缓慢;围压越大,土体强度越大,不同围压影响下,应力-应变曲线的形状和走势却大致相同,分析结果可为季节冻土区实际工程提供一定的参考。
积雪作为冰冻圈的重要组成部分,对地面有保温作用,在消融时又吸收热量降低地面温度,影响冻土发育,对气候的变化十分敏感。利用微波遥感数据1979-2014年逐日中国雪深长时间序列数据集,采用GIS空间分析和地学统计方法,分析了东北冻土区积雪深度的时空变化规律及其异常变化。结果表明,东北冻土区多年平均雪深为2.92 cm,年平均雪深最高值出现在岛状多年冻土区,最低值出现在季节冻土区。东北冻土区年平均积雪深度变化以减少为主,占区域面积的39.77%,减少速率为0.07 cm·(10a)-1。东北冻土区年平均积雪深度在1986年发生突变,开始出现减少的趋势,这与气温突变年份较为吻合。受地形和气温变化影响,年平均积雪深度减少的敏感区域主要发生在岛状多年冻土区。气温是影响东北冻土区年平均积雪深度变化最主要的因素,降水量、风速、湿度、日照时数对积雪深度均有影响。季节冻土区积雪深度对气候的敏感性要大于多年冻土区。
以青海祁连山煤炭基地为例,从含水层敏感性、含水层功能和煤炭开采影响力三方面建立评价指标体系,进行高寒冻土区含水层保护评价。评价结果表明:研究区含水层亟需重点保护的区域面积较小,并且不存在某一种含水层类型普遍处于亟需保护的状态;含水层一级重点保护区零星分布,仅为弧山矿区、江仓煤矿二井田和四井田、冬库矿区的冻结层上含水层以及研究区内主要大泉的补给区;研究区内超过50%的面积为含水层五级保护区,其中绝大多数地区为高山基岩区,虽然保护等级低,但也应加强含水层结构稳定性等方面的监测;木里盆地、江仓盆地与默勒盆地相比较,前者含水层敏感性较强,后者含水层功能较强,虽然保护等级均为二级,但是含水层保护的侧重点不同。
采用MTS-810液压伺服材料试验机,对人工配制的冻黏土试件进行了三轴蠕变试验,获得了冻黏土在复杂应力状态下的蠕变曲线.结果表明:冻土的蠕变变形具有较强的温度敏感性,温度越高,这种温度敏感性越强;相同温度下,荷载越大,变形越大.运用相关理论,推导了冻黏土在复杂应力状态下的三轴蠕变非线性数学模型,采用MATLAB软件的数据拟合功能得到了模型方程参数的数值,模型参数与温度之间存在密切关系,建立了二者之间的数学表达式.冻土三轴蠕变非线性数学模型的曲线与试验曲线拟合精度较高,建立的数学模型可以精确体现冻土的蠕变规律,能够为实际冻土工程的变形发展预测提供有效的理论指导.
在冻土帷幕平均温度计算中,控制参数的变化直接影响到计算结果。以单排管冻土帷幕温度场的巴霍尔金解析解为基础,使用近似积分和有限元模拟方法计算直线形单排管冻土帷幕的整体平均温度。针对基于巴霍尔金模型的平均温度计算公式中的冻结管外表面温度、冻结管间距及冻土帷幕边界到冻结管中心的距离与冻结管间距的比值3个参数对冻土帷幕整体平均温度影响的敏感性进行分析。得到以下结论:(1)冻土帷幕整体平均温度与冻结管外表面温度成正比;(2)在相同的偏差下,冻结管间距越小,对整体平均温度影响越大;(3)随着冻结发展,冻土帷幕厚度逐渐增大,其误差对整体平均温度计算的影响逐渐降低。