冻土区天然气水合物开采过程中冰相生成增加了天然气在储层内的运移难度,因此,增加天然气产量和减少冰的产生对储层内气体运移阻塞影响是冻融水合物储层高效开发面临的关键问题。以祁连山冻土区DK–2站位储层参数为基础,提出降压与水力压裂协同开发策略。通过数值模拟系统评估压裂带半径(0~5 m)和渗透率(1~1 000 mD)对开采效果的影响。研究表明,水力压裂形成的改性储层区可有效抑制冰相堵塞,加速压力传递与气体运移。当压裂带半径由0增至5.0 m时,天然气30 a的累计产量提升219%,其中前10 a贡献率达54.8%,储层总体分解率为48.7%。参数敏感性分析表明,压裂带渗透率超过100 mD后增产效果趋缓,最优压裂半径取4 m。该研究成果为冻土区水合物开采中冰堵效应的工程调控提供了理论依据,揭示了储层改造对提升气水两相运移效率的重要作用。
积雪对下伏活动层、融区和多年冻土管基的水热和水文状态影响很大,同时对其力学性质和冻融灾害的发展变化也可产生重要影响。本文以中俄原油管道基础为研究对象,建立了随积雪深度动态变化时,在管道运行和有冰水相变条件下的埋地管道与周围管基土热相互作用的数值模型。研究结果表明,同一区域不同上边界条件对冻土温度场影响差异较大,尤其是当上边界条件中考虑实际的积雪影响时,会极大地影响管基土温度场的分布和活动层厚度。在30年管道运行影响下,地表有雪和无雪条件下的最大融化深度分别达到6.32 m和5.39 m,并且冬季积雪的存在导致土体温度上升,加剧了管基土的融化,导致管道正下方融化层不断增厚;有雪条件下地表0.05 m和1.00 m埋深处每次达到的地温最小值比无雪条件下高4.5℃和2.4℃左右,每年达到地温最小值时间也比无雪条件延缓10 d左右。因此,建议在管道设计和维运时充分考虑积雪对管基土的影响,采取相应管护措施,减小管道和积雪共同作用时对管周土体的影响。
积雪对下伏活动层、融区和多年冻土管基的水热和水文状态影响很大,同时对其力学性质和冻融灾害的发展变化也可产生重要影响。本文以中俄原油管道基础为研究对象,建立了随积雪深度动态变化时,在管道运行和有冰水相变条件下的埋地管道与周围管基土热相互作用的数值模型。研究结果表明,同一区域不同上边界条件对冻土温度场影响差异较大,尤其是当上边界条件中考虑实际的积雪影响时,会极大地影响管基土温度场的分布和活动层厚度。在30年管道运行影响下,地表有雪和无雪条件下的最大融化深度分别达到6.32 m和5.39 m,并且冬季积雪的存在导致土体温度上升,加剧了管基土的融化,导致管道正下方融化层不断增厚;有雪条件下地表0.05 m和1.00 m埋深处每次达到的地温最小值比无雪条件下高4.5℃和2.4℃左右,每年达到地温最小值时间也比无雪条件延缓10 d左右。因此,建议在管道设计和维运时充分考虑积雪对管基土的影响,采取相应管护措施,减小管道和积雪共同作用时对管周土体的影响。
积雪对下伏活动层、融区和多年冻土管基的水热和水文状态影响很大,同时对其力学性质和冻融灾害的发展变化也可产生重要影响。本文以中俄原油管道基础为研究对象,建立了随积雪深度动态变化时,在管道运行和有冰水相变条件下的埋地管道与周围管基土热相互作用的数值模型。研究结果表明,同一区域不同上边界条件对冻土温度场影响差异较大,尤其是当上边界条件中考虑实际的积雪影响时,会极大地影响管基土温度场的分布和活动层厚度。在30年管道运行影响下,地表有雪和无雪条件下的最大融化深度分别达到6.32 m和5.39 m,并且冬季积雪的存在导致土体温度上升,加剧了管基土的融化,导致管道正下方融化层不断增厚;有雪条件下地表0.05 m和1.00 m埋深处每次达到的地温最小值比无雪条件下高4.5℃和2.4℃左右,每年达到地温最小值时间也比无雪条件延缓10 d左右。因此,建议在管道设计和维运时充分考虑积雪对管基土的影响,采取相应管护措施,减小管道和积雪共同作用时对管周土体的影响。
积雪对下伏活动层、融区和多年冻土管基的水热和水文状态影响很大,同时对其力学性质和冻融灾害的发展变化也可产生重要影响。本文以中俄原油管道基础为研究对象,建立了随积雪深度动态变化时,在管道运行和有冰水相变条件下的埋地管道与周围管基土热相互作用的数值模型。研究结果表明,同一区域不同上边界条件对冻土温度场影响差异较大,尤其是当上边界条件中考虑实际的积雪影响时,会极大地影响管基土温度场的分布和活动层厚度。在30年管道运行影响下,地表有雪和无雪条件下的最大融化深度分别达到6.32 m和5.39 m,并且冬季积雪的存在导致土体温度上升,加剧了管基土的融化,导致管道正下方融化层不断增厚;有雪条件下地表0.05 m和1.00 m埋深处每次达到的地温最小值比无雪条件下高4.5℃和2.4℃左右,每年达到地温最小值时间也比无雪条件延缓10 d左右。因此,建议在管道设计和维运时充分考虑积雪对管基土的影响,采取相应管护措施,减小管道和积雪共同作用时对管周土体的影响。
积雪对下伏活动层、融区和多年冻土管基的水热和水文状态影响很大,同时对其力学性质和冻融灾害的发展变化也可产生重要影响。本文以中俄原油管道基础为研究对象,建立了随积雪深度动态变化时,在管道运行和有冰水相变条件下的埋地管道与周围管基土热相互作用的数值模型。研究结果表明,同一区域不同上边界条件对冻土温度场影响差异较大,尤其是当上边界条件中考虑实际的积雪影响时,会极大地影响管基土温度场的分布和活动层厚度。在30年管道运行影响下,地表有雪和无雪条件下的最大融化深度分别达到6.32 m和5.39 m,并且冬季积雪的存在导致土体温度上升,加剧了管基土的融化,导致管道正下方融化层不断增厚;有雪条件下地表0.05 m和1.00 m埋深处每次达到的地温最小值比无雪条件下高4.5℃和2.4℃左右,每年达到地温最小值时间也比无雪条件延缓10 d左右。因此,建议在管道设计和维运时充分考虑积雪对管基土的影响,采取相应管护措施,减小管道和积雪共同作用时对管周土体的影响。
青藏高原热喀斯特湖分布广泛,近年来在气候变暖背景下快速发展。热喀斯特湖的形成和发展与地下冰含量及气候变化有着密切关系,强烈影响多年冻土的热稳定性。为了更深入理解在气候变暖背景下热喀斯特湖的发展及其对下伏多年冻土的影响,以青藏高原北麓河地区一个典型热喀斯特湖的长期监测数据为资料,发展了耦合大气—湖塘—冻土三个过程要素的一维热传导模型,模拟了四种不同深度热喀斯特湖在气候变暖背景下的发展规律及其对多年冻土的热影响。结果表明:浅湖(<1.0m)在目前稳定气候背景下处于较稳定状态,湖冰能够回冻至湖底,对下伏多年冻土影响较小;较深湖塘(≥1.0m)冬季不能回冻至湖底,湖深不断增加,且底部在50年内将会形成不同深度的融区。随着气候变暖,热喀斯特湖的热效应显著,深度快速增加,较深湖塘的最大湖冰厚度减小,底部多年冻土快速融化形成开放融区。研究将有助于理解气候变化对青藏高原多年冻土区地貌演化及水文过程的影响。
青藏高原热喀斯特湖分布广泛,近年来在气候变暖背景下快速发展。热喀斯特湖的形成和发展与地下冰含量及气候变化有着密切关系,强烈影响多年冻土的热稳定性。为了更深入理解在气候变暖背景下热喀斯特湖的发展及其对下伏多年冻土的影响,以青藏高原北麓河地区一个典型热喀斯特湖的长期监测数据为资料,发展了耦合大气—湖塘—冻土三个过程要素的一维热传导模型,模拟了四种不同深度热喀斯特湖在气候变暖背景下的发展规律及其对多年冻土的热影响。结果表明:浅湖(<1.0m)在目前稳定气候背景下处于较稳定状态,湖冰能够回冻至湖底,对下伏多年冻土影响较小;较深湖塘(≥1.0m)冬季不能回冻至湖底,湖深不断增加,且底部在50年内将会形成不同深度的融区。随着气候变暖,热喀斯特湖的热效应显著,深度快速增加,较深湖塘的最大湖冰厚度减小,底部多年冻土快速融化形成开放融区。研究将有助于理解气候变化对青藏高原多年冻土区地貌演化及水文过程的影响。
青藏高原热喀斯特湖分布广泛,近年来在气候变暖背景下快速发展。热喀斯特湖的形成和发展与地下冰含量及气候变化有着密切关系,强烈影响多年冻土的热稳定性。为了更深入理解在气候变暖背景下热喀斯特湖的发展及其对下伏多年冻土的影响,以青藏高原北麓河地区一个典型热喀斯特湖的长期监测数据为资料,发展了耦合大气—湖塘—冻土三个过程要素的一维热传导模型,模拟了四种不同深度热喀斯特湖在气候变暖背景下的发展规律及其对多年冻土的热影响。结果表明:浅湖(<1.0m)在目前稳定气候背景下处于较稳定状态,湖冰能够回冻至湖底,对下伏多年冻土影响较小;较深湖塘(≥1.0m)冬季不能回冻至湖底,湖深不断增加,且底部在50年内将会形成不同深度的融区。随着气候变暖,热喀斯特湖的热效应显著,深度快速增加,较深湖塘的最大湖冰厚度减小,底部多年冻土快速融化形成开放融区。研究将有助于理解气候变化对青藏高原多年冻土区地貌演化及水文过程的影响。
青藏高原热喀斯特湖分布广泛,近年来在气候变暖背景下快速发展。热喀斯特湖的形成和发展与地下冰含量及气候变化有着密切关系,强烈影响多年冻土的热稳定性。为了更深入理解在气候变暖背景下热喀斯特湖的发展及其对下伏多年冻土的影响,以青藏高原北麓河地区一个典型热喀斯特湖的长期监测数据为资料,发展了耦合大气—湖塘—冻土三个过程要素的一维热传导模型,模拟了四种不同深度热喀斯特湖在气候变暖背景下的发展规律及其对多年冻土的热影响。结果表明:浅湖(<1.0m)在目前稳定气候背景下处于较稳定状态,湖冰能够回冻至湖底,对下伏多年冻土影响较小;较深湖塘(≥1.0m)冬季不能回冻至湖底,湖深不断增加,且底部在50年内将会形成不同深度的融区。随着气候变暖,热喀斯特湖的热效应显著,深度快速增加,较深湖塘的最大湖冰厚度减小,底部多年冻土快速融化形成开放融区。研究将有助于理解气候变化对青藏高原多年冻土区地貌演化及水文过程的影响。