为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
为探究寒区路基在水-热耦合作用下的变形机理,本研究以鹤哈高速(G1111)苔青至伊春段(62.44km)为对象,构建二维水热迁移耦合模型,结合现场监测与数值模拟方法,揭示冻融循环过程中路基温度场、水分场与变形场的相互作用规律。基于相变传热与非等温水分迁移理论,采用Abaqus软件进行仿真分析,在路基横断面上自左侧路肩至右侧路肩按1.25m间距均匀布设9个综合监测点,量化路基表层冻胀与融沉阶段的变形特征。结果表明:冻结期模拟路段路基表层最大冻胀位移可达8.48mm,横截面变形呈抛物线分布;春季融沉速率(0.12mm/d)显著高于冻胀期(0.07mm/d),且11月至次年1月的冻胀速率较1-2月高18.7%;竖向位移极值与地温梯度呈负相关。研究成果为寒区道路抗冻设计与病害防控提供了理论依据。
为探究寒区路基在水-热耦合作用下的变形机理,本研究以鹤哈高速(G1111)苔青至伊春段(62.44km)为对象,构建二维水热迁移耦合模型,结合现场监测与数值模拟方法,揭示冻融循环过程中路基温度场、水分场与变形场的相互作用规律。基于相变传热与非等温水分迁移理论,采用Abaqus软件进行仿真分析,在路基横断面上自左侧路肩至右侧路肩按1.25m间距均匀布设9个综合监测点,量化路基表层冻胀与融沉阶段的变形特征。结果表明:冻结期模拟路段路基表层最大冻胀位移可达8.48mm,横截面变形呈抛物线分布;春季融沉速率(0.12mm/d)显著高于冻胀期(0.07mm/d),且11月至次年1月的冻胀速率较1-2月高18.7%;竖向位移极值与地温梯度呈负相关。研究成果为寒区道路抗冻设计与病害防控提供了理论依据。
为探究寒区路基在水-热耦合作用下的变形机理,本研究以鹤哈高速(G1111)苔青至伊春段(62.44km)为对象,构建二维水热迁移耦合模型,结合现场监测与数值模拟方法,揭示冻融循环过程中路基温度场、水分场与变形场的相互作用规律。基于相变传热与非等温水分迁移理论,采用Abaqus软件进行仿真分析,在路基横断面上自左侧路肩至右侧路肩按1.25m间距均匀布设9个综合监测点,量化路基表层冻胀与融沉阶段的变形特征。结果表明:冻结期模拟路段路基表层最大冻胀位移可达8.48mm,横截面变形呈抛物线分布;春季融沉速率(0.12mm/d)显著高于冻胀期(0.07mm/d),且11月至次年1月的冻胀速率较1-2月高18.7%;竖向位移极值与地温梯度呈负相关。研究成果为寒区道路抗冻设计与病害防控提供了理论依据。
在使用电加热道岔融雪装置对道岔尖轨处进行融雪消冰的过程中,当电加热条安装在基本轨的轨腰时,热量会通过热传导的方式传递给基本轨外侧造成热量散失,导致加热效率不高。为提高尖轨处电加热道岔融雪装置的加热效率,提出在基本轨外侧安装保温材料的方法。以60kg/m钢轨12号道岔为研究对象,使用SOLIDWORKS和COMSOL Multiphysics软件分别建立安装有电加热道岔融雪装置的尖轨处道岔结构的几何仿真模型和有限元模型,并验证有限元模型的准确性;分析其传热过程和融雪过程;基于数值模拟探讨安装保温层的方案、保温层厚度以及适用地区。试验结果表明:使用在基本轨外侧1/2轨腰以下位置安装保温层的方案2和在基本轨外侧整个轨腰和轨坡安装保温层的方案3安装5mm厚的保温层使有效融雪区域温度分别升高6.41℃、6.40℃,积雪融化后水的体积占比分别升高6.47%、4.83%,即使用方案2和方案3安装保温层都可以提高尖轨处电加热道岔融雪装置的加热效率;两种方案增加保温层的厚度至10mm不会显著提高加热效率;在严寒地区、寒冷地区安装保温层后使有效融雪区域温度分别升高11.23℃、6.4℃,积雪融化后水的体积...
在使用电加热道岔融雪装置对道岔尖轨处进行融雪消冰的过程中,当电加热条安装在基本轨的轨腰时,热量会通过热传导的方式传递给基本轨外侧造成热量散失,导致加热效率不高。为提高尖轨处电加热道岔融雪装置的加热效率,提出在基本轨外侧安装保温材料的方法。以60kg/m钢轨12号道岔为研究对象,使用SOLIDWORKS和COMSOL Multiphysics软件分别建立安装有电加热道岔融雪装置的尖轨处道岔结构的几何仿真模型和有限元模型,并验证有限元模型的准确性;分析其传热过程和融雪过程;基于数值模拟探讨安装保温层的方案、保温层厚度以及适用地区。试验结果表明:使用在基本轨外侧1/2轨腰以下位置安装保温层的方案2和在基本轨外侧整个轨腰和轨坡安装保温层的方案3安装5mm厚的保温层使有效融雪区域温度分别升高6.41℃、6.40℃,积雪融化后水的体积占比分别升高6.47%、4.83%,即使用方案2和方案3安装保温层都可以提高尖轨处电加热道岔融雪装置的加热效率;两种方案增加保温层的厚度至10mm不会显著提高加热效率;在严寒地区、寒冷地区安装保温层后使有效融雪区域温度分别升高11.23℃、6.4℃,积雪融化后水的体积...
在使用电加热道岔融雪装置对道岔尖轨处进行融雪消冰的过程中,当电加热条安装在基本轨的轨腰时,热量会通过热传导的方式传递给基本轨外侧造成热量散失,导致加热效率不高。为提高尖轨处电加热道岔融雪装置的加热效率,提出在基本轨外侧安装保温材料的方法。以60kg/m钢轨12号道岔为研究对象,使用SOLIDWORKS和COMSOL Multiphysics软件分别建立安装有电加热道岔融雪装置的尖轨处道岔结构的几何仿真模型和有限元模型,并验证有限元模型的准确性;分析其传热过程和融雪过程;基于数值模拟探讨安装保温层的方案、保温层厚度以及适用地区。试验结果表明:使用在基本轨外侧1/2轨腰以下位置安装保温层的方案2和在基本轨外侧整个轨腰和轨坡安装保温层的方案3安装5mm厚的保温层使有效融雪区域温度分别升高6.41℃、6.40℃,积雪融化后水的体积占比分别升高6.47%、4.83%,即使用方案2和方案3安装保温层都可以提高尖轨处电加热道岔融雪装置的加热效率;两种方案增加保温层的厚度至10mm不会显著提高加热效率;在严寒地区、寒冷地区安装保温层后使有效融雪区域温度分别升高11.23℃、6.4℃,积雪融化后水的体积...
青藏高原多年冻土近地表土壤冻融循环会影响土壤和大气之间的水分与能量交换,研究其时空变化特征及对气候变化的响应对理解高原气候变化机制具有重要意义。本文基于通用陆面模式(Community Land Model 5.0, CLM5.0)计算1980-2017年高原多年冻土区近地表冻融参量,即土壤冻结开始时间、冻结结束时间、融化持续时间和冻结持续时间,并分析其时空变化及与近地表温度、降水量、积雪厚度和植被指数的相关性。结果表明:(1)高原多年冻土近地表土壤冻结开始时间集中于9月到10月中下旬,结束时间集中于2-5月。半湿润区土壤融化时间最长而半干旱区最短,平均相差15 d。高原多年冻土土壤冻融状态变化显著,除喀喇昆仑山脉附近外,大部分多年冻土地区显示冻结、融化持续时间分别具有缩短和增长趋势。高原平均土壤融化持续时间增长速率为2 d·(10a)-1,其中半湿润区增长趋势最为显著,达4 d·(10a)-1。(2)高原多年冻土冻融参量与地理因子具有联系。在29°N-36°N和82.5°E-103°E融化持续时间呈增长趋势,但速率分别降低和增加。随着海拔升...