为了快速和直观地掌握新型框架锚杆支护下多年冻土边坡的冻融规律,基于水-热-力耦合理论,考虑多年冻土边坡冻结和融化规律,在考虑风速影响下建立了新型通风锚杆支护边坡冻胀、融化固结耦合控制方程,并通过伽辽金法和有限差分法对这些控制方程进行相应的空间域和时间域的离散,进而编制了有限元软件,从而建立了新型框架通风锚杆支护多年冻土边坡水-热-力耦合模型,并采用室内模型试验验证了所建立模型的可靠性.利用该模型对新型框架通风锚杆支护多年冻土边坡进行了计算,研究结果表明:(1)在新型框架通风锚杆支护下,坡面及锚杆周围的温度明显低于坡体内部,且锚杆周围的温度分布呈现波浪线形态;在融化期间,坡面温度相对升高,然而锚杆周围的温度仍然低于坡体内部.(2)经过长期的冻融循环,边坡产生了不可恢复的变形,且变形逐年累加.(3)在冻融循环周期内,锚杆轴力表现为逐渐增大、然后减小的趋势,其受到的冻胀力超过融土土压力.该计算模型可为新型框架通风锚杆的设计计算提供理论指导.
为了快速和直观地掌握新型框架锚杆支护下多年冻土边坡的冻融规律,基于水-热-力耦合理论,考虑多年冻土边坡冻结和融化规律,在考虑风速影响下建立了新型通风锚杆支护边坡冻胀、融化固结耦合控制方程,并通过伽辽金法和有限差分法对这些控制方程进行相应的空间域和时间域的离散,进而编制了有限元软件,从而建立了新型框架通风锚杆支护多年冻土边坡水-热-力耦合模型,并采用室内模型试验验证了所建立模型的可靠性.利用该模型对新型框架通风锚杆支护多年冻土边坡进行了计算,研究结果表明:(1)在新型框架通风锚杆支护下,坡面及锚杆周围的温度明显低于坡体内部,且锚杆周围的温度分布呈现波浪线形态;在融化期间,坡面温度相对升高,然而锚杆周围的温度仍然低于坡体内部.(2)经过长期的冻融循环,边坡产生了不可恢复的变形,且变形逐年累加.(3)在冻融循环周期内,锚杆轴力表现为逐渐增大、然后减小的趋势,其受到的冻胀力超过融土土压力.该计算模型可为新型框架通风锚杆的设计计算提供理论指导.
为了快速和直观地掌握新型框架锚杆支护下多年冻土边坡的冻融规律,基于水-热-力耦合理论,考虑多年冻土边坡冻结和融化规律,在考虑风速影响下建立了新型通风锚杆支护边坡冻胀、融化固结耦合控制方程,并通过伽辽金法和有限差分法对这些控制方程进行相应的空间域和时间域的离散,进而编制了有限元软件,从而建立了新型框架通风锚杆支护多年冻土边坡水-热-力耦合模型,并采用室内模型试验验证了所建立模型的可靠性.利用该模型对新型框架通风锚杆支护多年冻土边坡进行了计算,研究结果表明:(1)在新型框架通风锚杆支护下,坡面及锚杆周围的温度明显低于坡体内部,且锚杆周围的温度分布呈现波浪线形态;在融化期间,坡面温度相对升高,然而锚杆周围的温度仍然低于坡体内部.(2)经过长期的冻融循环,边坡产生了不可恢复的变形,且变形逐年累加.(3)在冻融循环周期内,锚杆轴力表现为逐渐增大、然后减小的趋势,其受到的冻胀力超过融土土压力.该计算模型可为新型框架通风锚杆的设计计算提供理论指导.
为了快速和直观地掌握新型框架锚杆支护下多年冻土边坡的冻融规律,基于水-热-力耦合理论,考虑多年冻土边坡冻结和融化规律,在考虑风速影响下建立了新型通风锚杆支护边坡冻胀、融化固结耦合控制方程,并通过伽辽金法和有限差分法对这些控制方程进行相应的空间域和时间域的离散,进而编制了有限元软件,从而建立了新型框架通风锚杆支护多年冻土边坡水-热-力耦合模型,并采用室内模型试验验证了所建立模型的可靠性.利用该模型对新型框架通风锚杆支护多年冻土边坡进行了计算,研究结果表明:(1)在新型框架通风锚杆支护下,坡面及锚杆周围的温度明显低于坡体内部,且锚杆周围的温度分布呈现波浪线形态;在融化期间,坡面温度相对升高,然而锚杆周围的温度仍然低于坡体内部.(2)经过长期的冻融循环,边坡产生了不可恢复的变形,且变形逐年累加.(3)在冻融循环周期内,锚杆轴力表现为逐渐增大、然后减小的趋势,其受到的冻胀力超过融土土压力.该计算模型可为新型框架通风锚杆的设计计算提供理论指导.
为了快速和直观地掌握新型框架锚杆支护下多年冻土边坡的冻融规律,基于水-热-力耦合理论,考虑多年冻土边坡冻结和融化规律,在考虑风速影响下建立了新型通风锚杆支护边坡冻胀、融化固结耦合控制方程,并通过伽辽金法和有限差分法对这些控制方程进行相应的空间域和时间域的离散,进而编制了有限元软件,从而建立了新型框架通风锚杆支护多年冻土边坡水-热-力耦合模型,并采用室内模型试验验证了所建立模型的可靠性.利用该模型对新型框架通风锚杆支护多年冻土边坡进行了计算,研究结果表明:(1)在新型框架通风锚杆支护下,坡面及锚杆周围的温度明显低于坡体内部,且锚杆周围的温度分布呈现波浪线形态;在融化期间,坡面温度相对升高,然而锚杆周围的温度仍然低于坡体内部.(2)经过长期的冻融循环,边坡产生了不可恢复的变形,且变形逐年累加.(3)在冻融循环周期内,锚杆轴力表现为逐渐增大、然后减小的趋势,其受到的冻胀力超过融土土压力.该计算模型可为新型框架通风锚杆的设计计算提供理论指导.
为了快速和直观地掌握新型框架锚杆支护下多年冻土边坡的冻融规律,基于水-热-力耦合理论,考虑多年冻土边坡冻结和融化规律,在考虑风速影响下建立了新型通风锚杆支护边坡冻胀、融化固结耦合控制方程,并通过伽辽金法和有限差分法对这些控制方程进行相应的空间域和时间域的离散,进而编制了有限元软件,从而建立了新型框架通风锚杆支护多年冻土边坡水-热-力耦合模型,并采用室内模型试验验证了所建立模型的可靠性.利用该模型对新型框架通风锚杆支护多年冻土边坡进行了计算,研究结果表明:(1)在新型框架通风锚杆支护下,坡面及锚杆周围的温度明显低于坡体内部,且锚杆周围的温度分布呈现波浪线形态;在融化期间,坡面温度相对升高,然而锚杆周围的温度仍然低于坡体内部.(2)经过长期的冻融循环,边坡产生了不可恢复的变形,且变形逐年累加.(3)在冻融循环周期内,锚杆轴力表现为逐渐增大、然后减小的趋势,其受到的冻胀力超过融土土压力.该计算模型可为新型框架通风锚杆的设计计算提供理论指导.
本文提出了一种具有通风降温、支挡锚固和减胀减震功能的新型框架通风锚杆冻土边坡支护结构,并阐述其工作机理。基于传热学和自然对流理论,建立新型框架通风锚杆与土体换热的计算模型,对其降温效果进行了分析;基于Winkler理论,建立冻胀和融沉阶段新型框架通风锚杆与土体相互作用的力学简化计算模型,分析冻胀和融化阶段新型框架通风锚杆受力性能。结合算例,采用提出的简化计算方法分析了新型框架通风锚杆支护多年冻土边坡的热学和力学效应,并通过模型试验与理论计算对比,对所提出理论计算方法的合理性进行验证。结果表明:(1)新型框架通风锚杆能够充分发挥冷季吸收冷量冻结土体、暖季屏蔽热量保护冻土的作用,并逐年抬升冻融交界面;(2)新型框架通风锚杆支护结构支护效果良好,能够减弱土体冻胀作用,提高多年冻土边坡的稳定性;(3)所提出简化计算方法以期为新型框架通风锚杆支护多年冻土边坡提供理论依据。
本文提出了一种具有通风降温、支挡锚固和减胀减震功能的新型框架通风锚杆冻土边坡支护结构,并阐述其工作机理。基于传热学和自然对流理论,建立新型框架通风锚杆与土体换热的计算模型,对其降温效果进行了分析;基于Winkler理论,建立冻胀和融沉阶段新型框架通风锚杆与土体相互作用的力学简化计算模型,分析冻胀和融化阶段新型框架通风锚杆受力性能。结合算例,采用提出的简化计算方法分析了新型框架通风锚杆支护多年冻土边坡的热学和力学效应,并通过模型试验与理论计算对比,对所提出理论计算方法的合理性进行验证。结果表明:(1)新型框架通风锚杆能够充分发挥冷季吸收冷量冻结土体、暖季屏蔽热量保护冻土的作用,并逐年抬升冻融交界面;(2)新型框架通风锚杆支护结构支护效果良好,能够减弱土体冻胀作用,提高多年冻土边坡的稳定性;(3)所提出简化计算方法以期为新型框架通风锚杆支护多年冻土边坡提供理论依据。
本文提出了一种具有通风降温、支挡锚固和减胀减震功能的新型框架通风锚杆冻土边坡支护结构,并阐述其工作机理。基于传热学和自然对流理论,建立新型框架通风锚杆与土体换热的计算模型,对其降温效果进行了分析;基于Winkler理论,建立冻胀和融沉阶段新型框架通风锚杆与土体相互作用的力学简化计算模型,分析冻胀和融化阶段新型框架通风锚杆受力性能。结合算例,采用提出的简化计算方法分析了新型框架通风锚杆支护多年冻土边坡的热学和力学效应,并通过模型试验与理论计算对比,对所提出理论计算方法的合理性进行验证。结果表明:(1)新型框架通风锚杆能够充分发挥冷季吸收冷量冻结土体、暖季屏蔽热量保护冻土的作用,并逐年抬升冻融交界面;(2)新型框架通风锚杆支护结构支护效果良好,能够减弱土体冻胀作用,提高多年冻土边坡的稳定性;(3)所提出简化计算方法以期为新型框架通风锚杆支护多年冻土边坡提供理论依据。
本文提出了一种具有通风降温、支挡锚固和减胀减震功能的新型框架通风锚杆冻土边坡支护结构,并阐述其工作机理。基于传热学和自然对流理论,建立新型框架通风锚杆与土体换热的计算模型,对其降温效果进行了分析;基于Winkler理论,建立冻胀和融沉阶段新型框架通风锚杆与土体相互作用的力学简化计算模型,分析冻胀和融化阶段新型框架通风锚杆受力性能。结合算例,采用提出的简化计算方法分析了新型框架通风锚杆支护多年冻土边坡的热学和力学效应,并通过模型试验与理论计算对比,对所提出理论计算方法的合理性进行验证。结果表明:(1)新型框架通风锚杆能够充分发挥冷季吸收冷量冻结土体、暖季屏蔽热量保护冻土的作用,并逐年抬升冻融交界面;(2)新型框架通风锚杆支护结构支护效果良好,能够减弱土体冻胀作用,提高多年冻土边坡的稳定性;(3)所提出简化计算方法以期为新型框架通风锚杆支护多年冻土边坡提供理论依据。