选用1970年10月至2021年4月大连市6个气象站的冻土观测资料、逐日平均地温、逐日平均气温及极端最低气温等资料,应用小波分析、线性回归分析、M-K检验等方法,分析近51 a大连市最大冻土深度的时空变化特征,并探讨其对气候变暖的响应。结果表明:1970—2021年大连市最大冻土深度的气候倾向率为-6.9 cm/10 a,年平均冻土持续时间为117 d,年变化为减少趋势,气候倾向率为-7.2 d/10 a;冻土开始日期推迟、结束日期提前,平均开始日期和结束日期分别为11月20日和3月18日。冻土最大冻结深度具有4类尺度的周期变化特征,其中以16~26 a的周期变化最显著。相关关系分析表明,近51 a大连市地温、气温、极端最低气温与最大冻土深度均为显著的负相关关系,地温对冻土最大深度的影响最为显著。
选用1970年10月至2021年4月大连市6个气象站的冻土观测资料、逐日平均地温、逐日平均气温及极端最低气温等资料,应用小波分析、线性回归分析、M-K检验等方法,分析近51 a大连市最大冻土深度的时空变化特征,并探讨其对气候变暖的响应。结果表明:1970—2021年大连市最大冻土深度的气候倾向率为-6.9 cm/10 a,年平均冻土持续时间为117 d,年变化为减少趋势,气候倾向率为-7.2 d/10 a;冻土开始日期推迟、结束日期提前,平均开始日期和结束日期分别为11月20日和3月18日。冻土最大冻结深度具有4类尺度的周期变化特征,其中以16~26 a的周期变化最显著。相关关系分析表明,近51 a大连市地温、气温、极端最低气温与最大冻土深度均为显著的负相关关系,地温对冻土最大深度的影响最为显著。
选用1970年10月至2021年4月大连市6个气象站的冻土观测资料、逐日平均地温、逐日平均气温及极端最低气温等资料,应用小波分析、线性回归分析、M-K检验等方法,分析近51 a大连市最大冻土深度的时空变化特征,并探讨其对气候变暖的响应。结果表明:1970—2021年大连市最大冻土深度的气候倾向率为-6.9 cm/10 a,年平均冻土持续时间为117 d,年变化为减少趋势,气候倾向率为-7.2 d/10 a;冻土开始日期推迟、结束日期提前,平均开始日期和结束日期分别为11月20日和3月18日。冻土最大冻结深度具有4类尺度的周期变化特征,其中以16~26 a的周期变化最显著。相关关系分析表明,近51 a大连市地温、气温、极端最低气温与最大冻土深度均为显著的负相关关系,地温对冻土最大深度的影响最为显著。
选用1970年10月至2021年4月大连市6个气象站的冻土观测资料、逐日平均地温、逐日平均气温及极端最低气温等资料,应用小波分析、线性回归分析、M-K检验等方法,分析近51 a大连市最大冻土深度的时空变化特征,并探讨其对气候变暖的响应。结果表明:1970—2021年大连市最大冻土深度的气候倾向率为-6.9 cm/10 a,年平均冻土持续时间为117 d,年变化为减少趋势,气候倾向率为-7.2 d/10 a;冻土开始日期推迟、结束日期提前,平均开始日期和结束日期分别为11月20日和3月18日。冻土最大冻结深度具有4类尺度的周期变化特征,其中以16~26 a的周期变化最显著。相关关系分析表明,近51 a大连市地温、气温、极端最低气温与最大冻土深度均为显著的负相关关系,地温对冻土最大深度的影响最为显著。
选用1970年10月至2021年4月大连市6个气象站的冻土观测资料、逐日平均地温、逐日平均气温及极端最低气温等资料,应用小波分析、线性回归分析、M-K检验等方法,分析近51 a大连市最大冻土深度的时空变化特征,并探讨其对气候变暖的响应。结果表明:1970—2021年大连市最大冻土深度的气候倾向率为-6.9 cm/10 a,年平均冻土持续时间为117 d,年变化为减少趋势,气候倾向率为-7.2 d/10 a;冻土开始日期推迟、结束日期提前,平均开始日期和结束日期分别为11月20日和3月18日。冻土最大冻结深度具有4类尺度的周期变化特征,其中以16~26 a的周期变化最显著。相关关系分析表明,近51 a大连市地温、气温、极端最低气温与最大冻土深度均为显著的负相关关系,地温对冻土最大深度的影响最为显著。
利用MODIS积雪产品数据,研究了蒙古高原2003—2022年间积雪融化期的时空变化特征,并以15 d为时间间隔跟踪分析了融雪线向高纬度方向的移动及其对气温的响应过程。结果表明:(1)2003—2022年积雪占蒙古高原总面积的55.59%~87.61%。其中2018年积雪覆盖面积最少,2009年最多。此外,在时间上20 a来蒙古高原积雪融化时间以0.18 d·(10a)-1的速率呈显著提前趋势(P<0.05),而稳定积雪区呈推迟趋势。(2)空间上,蒙古高原北部地区的积雪融化时间明显晚于南部地区。而稳定积雪区主要分布于融雪时间普遍较晚的蒙古国西北部地区,其中64.9%的区域呈提前趋势。(3)通过对蒙古高原冬季(自1月起)每半月尺度的观测研究发现,融雪线与-5 ℃、0 ℃等温线的移动趋势先后出现同步性。且融雪线位置与温度的相关性除2018年外其整体都处于0.72~0.98的较高区间,这表明温度是影响融雪线位置的关键因素。
利用MODIS积雪产品数据,研究了蒙古高原2003—2022年间积雪融化期的时空变化特征,并以15 d为时间间隔跟踪分析了融雪线向高纬度方向的移动及其对气温的响应过程。结果表明:(1)2003—2022年积雪占蒙古高原总面积的55.59%~87.61%。其中2018年积雪覆盖面积最少,2009年最多。此外,在时间上20 a来蒙古高原积雪融化时间以0.18 d·(10a)-1的速率呈显著提前趋势(P<0.05),而稳定积雪区呈推迟趋势。(2)空间上,蒙古高原北部地区的积雪融化时间明显晚于南部地区。而稳定积雪区主要分布于融雪时间普遍较晚的蒙古国西北部地区,其中64.9%的区域呈提前趋势。(3)通过对蒙古高原冬季(自1月起)每半月尺度的观测研究发现,融雪线与-5 ℃、0 ℃等温线的移动趋势先后出现同步性。且融雪线位置与温度的相关性除2018年外其整体都处于0.72~0.98的较高区间,这表明温度是影响融雪线位置的关键因素。
利用MODIS积雪产品数据,研究了蒙古高原2003—2022年间积雪融化期的时空变化特征,并以15 d为时间间隔跟踪分析了融雪线向高纬度方向的移动及其对气温的响应过程。结果表明:(1)2003—2022年积雪占蒙古高原总面积的55.59%~87.61%。其中2018年积雪覆盖面积最少,2009年最多。此外,在时间上20 a来蒙古高原积雪融化时间以0.18 d·(10a)-1的速率呈显著提前趋势(P<0.05),而稳定积雪区呈推迟趋势。(2)空间上,蒙古高原北部地区的积雪融化时间明显晚于南部地区。而稳定积雪区主要分布于融雪时间普遍较晚的蒙古国西北部地区,其中64.9%的区域呈提前趋势。(3)通过对蒙古高原冬季(自1月起)每半月尺度的观测研究发现,融雪线与-5 ℃、0 ℃等温线的移动趋势先后出现同步性。且融雪线位置与温度的相关性除2018年外其整体都处于0.72~0.98的较高区间,这表明温度是影响融雪线位置的关键因素。
利用MODIS积雪产品数据,研究了蒙古高原2003—2022年间积雪融化期的时空变化特征,并以15 d为时间间隔跟踪分析了融雪线向高纬度方向的移动及其对气温的响应过程。结果表明:(1)2003—2022年积雪占蒙古高原总面积的55.59%~87.61%。其中2018年积雪覆盖面积最少,2009年最多。此外,在时间上20 a来蒙古高原积雪融化时间以0.18 d·(10a)-1的速率呈显著提前趋势(P<0.05),而稳定积雪区呈推迟趋势。(2)空间上,蒙古高原北部地区的积雪融化时间明显晚于南部地区。而稳定积雪区主要分布于融雪时间普遍较晚的蒙古国西北部地区,其中64.9%的区域呈提前趋势。(3)通过对蒙古高原冬季(自1月起)每半月尺度的观测研究发现,融雪线与-5 ℃、0 ℃等温线的移动趋势先后出现同步性。且融雪线位置与温度的相关性除2018年外其整体都处于0.72~0.98的较高区间,这表明温度是影响融雪线位置的关键因素。
利用MODIS积雪产品数据,研究了蒙古高原2003—2022年间积雪融化期的时空变化特征,并以15 d为时间间隔跟踪分析了融雪线向高纬度方向的移动及其对气温的响应过程。结果表明:(1)2003—2022年积雪占蒙古高原总面积的55.59%~87.61%。其中2018年积雪覆盖面积最少,2009年最多。此外,在时间上20 a来蒙古高原积雪融化时间以0.18 d·(10a)-1的速率呈显著提前趋势(P<0.05),而稳定积雪区呈推迟趋势。(2)空间上,蒙古高原北部地区的积雪融化时间明显晚于南部地区。而稳定积雪区主要分布于融雪时间普遍较晚的蒙古国西北部地区,其中64.9%的区域呈提前趋势。(3)通过对蒙古高原冬季(自1月起)每半月尺度的观测研究发现,融雪线与-5 ℃、0 ℃等温线的移动趋势先后出现同步性。且融雪线位置与温度的相关性除2018年外其整体都处于0.72~0.98的较高区间,这表明温度是影响融雪线位置的关键因素。