以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
主要介绍冻胀的防御措施以及应用效果,对比光伏支架基础经济性和适用性等优劣势,从而总结地基土壤改良方式、桩基础埋深、柔性材料隔离及新型斜面基础防治措施,科学施策,获得抗冻胀效果显著的方法,例如保温法、涂敷法、套管法及钢管螺旋桩等,有利于减少季节性冻土对光伏支架设备的干扰,提供解决冻胀防治新技术和措施。
主要介绍冻胀的防御措施以及应用效果,对比光伏支架基础经济性和适用性等优劣势,从而总结地基土壤改良方式、桩基础埋深、柔性材料隔离及新型斜面基础防治措施,科学施策,获得抗冻胀效果显著的方法,例如保温法、涂敷法、套管法及钢管螺旋桩等,有利于减少季节性冻土对光伏支架设备的干扰,提供解决冻胀防治新技术和措施。
根据多年冻土地区路基施工防冻技术的实际需求,结合BIM技术的独特优势,文章以高寒环境下的高速铁路建设项目——哈牡高速铁路工程为案例,基于监测断面数据拟合初始值及边界条件,使用COMSOL Multiphysics构建3种防冻胀护道路基模型,研究不同型式防冻胀护道对路基冻结特性的影响。此外,还探索了高寒条件下高速铁路路基防冻计算等BIM技术的应用,旨在为BIM技术在多年冻土地区路基施工领域的广泛应用提供科学的参考依据。研究结论:(1)在高寒地区铁路路基的冻胀现象难以完全避免,通过合理的措施是完全可以控制的。其填料质量是防冻胀控制的核心要素,而施工质量的严格过程管控则是实现有效防冻的基础保障。(2)针对多年冻土地区常见的铁路路基施工,有限元法和BIM技术的引入为实现路基填料布置的优化提供支持。通过可视化的方式能够在施工阶段显著提高防冻效率和质量,为工程的顺利进行提供有力技术支撑。(3)通过分析高寒条件下路基冻胀的机理,提出高速铁路路基材料选择和改良、排水系统防冻设计、保温热棒、福利凯保温应用以及监测与预警系统建立等防冻技术。
根据多年冻土地区路基施工防冻技术的实际需求,结合BIM技术的独特优势,文章以高寒环境下的高速铁路建设项目——哈牡高速铁路工程为案例,基于监测断面数据拟合初始值及边界条件,使用COMSOL Multiphysics构建3种防冻胀护道路基模型,研究不同型式防冻胀护道对路基冻结特性的影响。此外,还探索了高寒条件下高速铁路路基防冻计算等BIM技术的应用,旨在为BIM技术在多年冻土地区路基施工领域的广泛应用提供科学的参考依据。研究结论:(1)在高寒地区铁路路基的冻胀现象难以完全避免,通过合理的措施是完全可以控制的。其填料质量是防冻胀控制的核心要素,而施工质量的严格过程管控则是实现有效防冻的基础保障。(2)针对多年冻土地区常见的铁路路基施工,有限元法和BIM技术的引入为实现路基填料布置的优化提供支持。通过可视化的方式能够在施工阶段显著提高防冻效率和质量,为工程的顺利进行提供有力技术支撑。(3)通过分析高寒条件下路基冻胀的机理,提出高速铁路路基材料选择和改良、排水系统防冻设计、保温热棒、福利凯保温应用以及监测与预警系统建立等防冻技术。