在ABAQUS软件的辅助下,本文构建了一个集轨道、路基及地基为一体的三维有限元模型,探讨了混凝土高速铁路路基在经受冻融周期与高铁荷载双重作用时的动态性能,详细分析了竖向动应力、位移及加速度等因素对结构性能的影响,通过正交试验评估了这些变量的敏感度,进一步明确了它们对路基性能的具体作用。这些探讨对多年冻土区高速铁路路基的持续维护与修复具有一定的参考意义。
在ABAQUS软件的辅助下,本文构建了一个集轨道、路基及地基为一体的三维有限元模型,探讨了混凝土高速铁路路基在经受冻融周期与高铁荷载双重作用时的动态性能,详细分析了竖向动应力、位移及加速度等因素对结构性能的影响,通过正交试验评估了这些变量的敏感度,进一步明确了它们对路基性能的具体作用。这些探讨对多年冻土区高速铁路路基的持续维护与修复具有一定的参考意义。
在ABAQUS软件的辅助下,本文构建了一个集轨道、路基及地基为一体的三维有限元模型,探讨了混凝土高速铁路路基在经受冻融周期与高铁荷载双重作用时的动态性能,详细分析了竖向动应力、位移及加速度等因素对结构性能的影响,通过正交试验评估了这些变量的敏感度,进一步明确了它们对路基性能的具体作用。这些探讨对多年冻土区高速铁路路基的持续维护与修复具有一定的参考意义。
在ABAQUS软件的辅助下,本文构建了一个集轨道、路基及地基为一体的三维有限元模型,探讨了混凝土高速铁路路基在经受冻融周期与高铁荷载双重作用时的动态性能,详细分析了竖向动应力、位移及加速度等因素对结构性能的影响,通过正交试验评估了这些变量的敏感度,进一步明确了它们对路基性能的具体作用。这些探讨对多年冻土区高速铁路路基的持续维护与修复具有一定的参考意义。
在ABAQUS软件的辅助下,本文构建了一个集轨道、路基及地基为一体的三维有限元模型,探讨了混凝土高速铁路路基在经受冻融周期与高铁荷载双重作用时的动态性能,详细分析了竖向动应力、位移及加速度等因素对结构性能的影响,通过正交试验评估了这些变量的敏感度,进一步明确了它们对路基性能的具体作用。这些探讨对多年冻土区高速铁路路基的持续维护与修复具有一定的参考意义。
在ABAQUS软件的辅助下,本文构建了一个集轨道、路基及地基为一体的三维有限元模型,探讨了混凝土高速铁路路基在经受冻融周期与高铁荷载双重作用时的动态性能,详细分析了竖向动应力、位移及加速度等因素对结构性能的影响,通过正交试验评估了这些变量的敏感度,进一步明确了它们对路基性能的具体作用。这些探讨对多年冻土区高速铁路路基的持续维护与修复具有一定的参考意义。
为得到管幕冻土温度场在渗流作用下的变化规律及温度敏感性影响因素影响,运用有限元数值软件建立热流耦合模型,通过控制模型有无渗流作用条件和设置温度路径分析管幕冻结法温度场分布特征。结果表明:渗流作用下的冻土帷幕不均匀发展,下游一侧冻结范围大于上游一侧,整体厚度变薄;冻结管密集区域内的5号点冻结效果受渗流影响小于冻结管分散区域内的1号点,渗流能直接穿过的区域温差更大;比热容与导热系数的改变对1号点温度变化影响较大;当导热系数越大、比热容越小时,土体最终温度越低。
为得到管幕冻土温度场在渗流作用下的变化规律及温度敏感性影响因素影响,运用有限元数值软件建立热流耦合模型,通过控制模型有无渗流作用条件和设置温度路径分析管幕冻结法温度场分布特征。结果表明:渗流作用下的冻土帷幕不均匀发展,下游一侧冻结范围大于上游一侧,整体厚度变薄;冻结管密集区域内的5号点冻结效果受渗流影响小于冻结管分散区域内的1号点,渗流能直接穿过的区域温差更大;比热容与导热系数的改变对1号点温度变化影响较大;当导热系数越大、比热容越小时,土体最终温度越低。
为得到渗流作用下管幕冻结法温度场的发展规律,结合三亚河口通道隧道冻结工程,基于达西定律与多孔介质传热理论,运用有限元软件建立水热耦合数值模型,采用更改模型渗流流速大小和建立测温路径的方法,围绕冻土帷幕的发展情况、交圈时间、壁厚进行分析。结果表明,冻土帷幕随渗流的流向发展,下游侧土体开始冻结的时间早于上游侧土体,且最终温度低于上游侧土体;当流速约为2.87 m/d时,低渗流流速作用对整体冻土帷幕交圈的时间影响较小;随着渗流流速的增大,整体冻土帷幕交圈所需的时间明显增加,其区域的不均匀程度变大,厚度减小;当流速增大至约10.02 m/d时,冻土帷幕出现局部不交圈的情况。考虑到原冻结方案偏于保守,设计优化方案为将内圈冻结管总数由80根减少至56根,模拟分析后的平均冻土帷幕厚度约为4.28 m,相较于原方案减少了0.195 m,仍满足冻结设计要求。
为得到渗流作用下管幕冻结法温度场的发展规律,结合三亚河口通道隧道冻结工程,基于达西定律与多孔介质传热理论,运用有限元软件建立水热耦合数值模型,采用更改模型渗流流速大小和建立测温路径的方法,围绕冻土帷幕的发展情况、交圈时间、壁厚进行分析。结果表明,冻土帷幕随渗流的流向发展,下游侧土体开始冻结的时间早于上游侧土体,且最终温度低于上游侧土体;当流速约为2.87 m/d时,低渗流流速作用对整体冻土帷幕交圈的时间影响较小;随着渗流流速的增大,整体冻土帷幕交圈所需的时间明显增加,其区域的不均匀程度变大,厚度减小;当流速增大至约10.02 m/d时,冻土帷幕出现局部不交圈的情况。考虑到原冻结方案偏于保守,设计优化方案为将内圈冻结管总数由80根减少至56根,模拟分析后的平均冻土帷幕厚度约为4.28 m,相较于原方案减少了0.195 m,仍满足冻结设计要求。