通过差式扫描量热法(differential scanning calorimetry,DSC)试验,研究不同初始含水率下黏土在冻融过程中未冻水含量与温度的关系,将融化和冻结过程中冻土未冻水含量的特征点作为参数,建立黏土未冻水含量与温度关系半经验模型,并分析初始含水率对参数的影响。结果表明:模型计算值与试验值吻合较好;初始含水率对黏土冻结时的过冷温度影响较小;完全融化温度随初始含水率增大略有上升;不同初始含水率的相同土质的未冻水含量在同一温度点的变化较小。
土体冻结和融化时的水分迁移、相变与传热是一个相互影响的耦合过程。采用基于有限体积法的开源软件Open FOAM,编制描述土体冻融过程的水热耦合计算程序。首先,基于土体水分和热量迁移基本方程、水分相变与温度的平衡方程,同时考虑相变对水分特征参数和热特性参数的影响以及相变潜热对传热过程的影响,建立冻土水热耦合数学模型。然后,采用基于多面体网格的有限体积方法对水热耦合控制方程进行空间离散,采用全隐式向后差分方法对方程进行时间离散,由此编制冻土水热耦合计算程序。该程序具有良好的几何适应性、质量和能量守恒性,具备面向复杂问题的并行计算功能。最后,采用该程序对两组不同温度边界条件的室内土体冻结试验进行数值模拟,并与试验结果进行对比,结果表明该程序可以较为准确地模拟土体冻结过程中温度场和水分场的演化特征。
为认知冻土导热系数测试和计算方法的研究现状,从而服务于冻土温度场的计算,介绍了冻土导热系数的研究背景和导热系数对冻土温度场的贡献,并对冻土的组成和导热系数随不同负温变化的原因进行了分析。阐述了目前冻土导热系数的测试技术、计算方法、理论计算模型及土中固相矿物导热系数的确定方法,并分析了其优缺点和误差存在的原因。对冻土导热系数随温度、干密度、含水率等因素变化的研究成果进行了整理,分析了基于测温法确定冻土导热系数存在的误差及其原因,并初步提出了一种修正冻土导热系数测试结果的方法。在此基础上,提出了对冻土导热系数测试和计算的建议和展望。结果表明:温控环境和测试过程中的相变热对导热系数实测值均存在影响,从未冻水含量的角度修正相变潜热对导热系数测试过程的影响具有理论可行性;线性回归预估模型应考虑土质对测试值的初始影响,从相间热量平衡的角度建立导热系数的理论模型,对于温度场解析问题的研究具有重要作用;考虑土颗粒的多孔特性,推演不随密度变化的土中固相物质导热系数的确定方法,对于提升冻土导热系数计算模型的预测精度具有基础作用;从微观角度出发,建立能够反映土体冻结速率的导热系数模型应是冻土导热系数研究区别...
考虑未冻水含量随不同负温变化的事实,结合混合量热法中相变潜热对冻土比热测试值的影响,建立了基于比热的冻土未冻水含量反演算法。依据比热具有按各成分质量可进行加权叠加的性质,将相变阶段某一温度点的冻土比热视为冻土骨架、液态水和固体冰三相的比热加权之和,同时还考虑了该温度点未冻水变化率所需潜热的影响,在此基础上导出了根据冻土比热反演其未冻水含量的方法。将冻土相变阶段一定温度下的比热视为冻土骨架、液态水和固体冰比热的加权总和。采用混合量热试验测量了某冻土试样的未冻水含量,并利用本文给出的反演算法计算了相应的未冻水含量。两种测试结果的未冻水含量变化趋势相同,即未冻水含量随着温度的降低逐渐减少,且递减趋势逐渐减弱;与混合量热试验方法相比,本文给出的算法得出的未冻水含量略高,这主要是因为新算法考虑了相变潜热的影响,因而理论上更为合理。
根据冻土中未冻水成因的本质——带负电黏土颗粒表面的扩散层中阳离子溶液特殊分布,依据基于静电场泊松方程与静电荷玻尔兹曼分布的双电层理论,推演出了未冻水含量理论公式,比较分析未冻水含量观测值拟合的经验公式,发现两者形式非常一致,经验公式实质为理论公式的简化。依据此理论,清晰地描述了冻土颗粒表面未冻水的结构特征及成因,定量分析了土壤类型、含盐度、温度对未冻水含量的影响;得出当土壤盐溶液浓度小于某一阈值时,盐渍度变化对未冻水含量的影响可以忽略,即不同类型常规(低含盐度)冻土,双电层结构几近相同,指数形式公式适用于所有常规冻土的未冻水含量;土壤类型通过比表面积影响着未冻水含量,在同等温度下,土壤中黏土颗粒越多,比表面积越大,未冻水含量越多;结合实测资料给出适用于不同类型冻土未冻水含量理论计算的参数值,随后通过两种已有的经验公式对计算结果进行了验证,证实了该理论公式的可行性。
冻土是一种特殊的土体,其性质与一般土体有较大差异。冻土中水分的含量与存在形式影响着冻土的各项性能。一直以来,冻土研究都是热点问题,由于试验手段的限制,对于冻土的分析以宏观研究较多。文中利用低场核磁共振孔隙分析仪,通过核磁信号的比值,计算各个温度点下未冻水质量含水率,绘制温度-含水率的函数曲线,结合不同条件试样的孔隙半径分布,揭示孔隙对未冻水含量的影响规律,并且探究不同初始含水率对曲线拐点的影响。试验结果表明,粉土、砂土和黏土土样冻结过程经历3个阶段:第Ⅰ阶段为过冷段,第Ⅱ阶段为迅速下降段,第Ⅲ阶段为稳定阶段;同种土质不同含水率的土样,降温过程发生冻结的拐点温度略有不同,但是差别较小;孔径分布越大,其冻结温度越低;未冻水含量与土体配合比关联较低,较多取决于土体本身的孔隙结构。
文章在冻土组分的介电特性原理基础上,对空气、水、冰及干土的温度-介电特性进行了实验研究。研究发现,在温度变化过程中,冻土总介电常数的变化主要取决于水和冰相变,空气和干土对总介电常数影响基本可忽略。基于这一特性,提出了利用空气、固态土、水和冰介电常数的差异检测冻土的方法,并进行了典型土壤冻结介电特性实验。实验结果表明,土壤冻结过程中介电常数变化在数值上较为明显且容易辨别。因此,采用基于介电特性的平面电容传感器检测冻土的方法是可行的。
土的比热容是冻结法施工中的重要参数,但既有混合量热法得到比热容是某一负温到平衡正温这一阶段的平均比热容而不是该负温点的比热容。根据黏土在冻结过程中孔隙水的相变随负温增加逐渐发生的客观事实,基于传统混合量热法建立了冻土比热容的递推算法。首先,待测试冻土试样分别由某一负温的左右两个微小增量开始,经混合量热法各个步骤后到达热平衡状态。则由负温开始至热平衡状态,试样吸收的热量Q,必然等于负温至0℃和0℃至平衡温度这两个阶段热量交换Q1和Q2的代数和。由于不存在相变,试样从0℃至热交换平衡温度需要的热量可以由常规的混合量热法获得。因此,试样由负温开始至0℃的热量可以通过两者相减得到,并可进一步得到试样由该负温左侧增量升温至该负温右侧增量需要的热量。最终,试样在该负温点的比热容可以根据比热容的定义得到。本文建立的冻土比热容递推算法能得到某温度点的比热容而非某温度段的平均比热容,且包含了潜热的贡献,因而更为合理有效。
采用低场核磁共振技术测试了冻融循环过程中不同土质、不同Na Cl离子浓度饱和试样的未冻水含量,结合T2分布曲线从微细观角度分析了冻融过程中未冻水在孔隙赋存分布情况。试验结果表明:冻结过程可分为过冷度段、快速下降段、稳定段3个阶段,而融化过程仅存在稳定段、快速融化段,并不存在与过冷现象对应的过热现象。冻结时大孔隙的水首先冻结,而融化时孔隙水的增加却是从小孔隙开始的,这是由水分热动力学势能的差异导致孔隙水冻结和融化在时间上的有序性。并且分析了冻融循环中土质类型、离子浓度对未冻水含量的影响,以及探讨了冻融过程出现的滞后现象的原因。