为了更好利用极化特征进行较准确的干雪识别,提出了一种面向干雪识别的合成孔径雷达(synthetic aperture radar,SAR)指数模型。以新疆玛纳斯河流域为研究区,选择干雪期Radarast-2全极化SAR数据进行Freeman极化分解,获取该时期的极化特征,并分析积雪覆盖区、非积雪覆盖区极化特征差异及极化特征的变化规律;在此基础上,提出一种新的面向干雪识别的指数模型,并进行Ostu阈值分割,识别干雪范围,并与最小距离、马氏距离、最大似然等监督分类方法的干雪识别结果进行对比分析。研究结果表明:基于Freeman极化分解构建的干雪识别指数模型,其总体分类精度达到85.83%,通过非监督的方式能够识别干雪覆盖范围。
冰川识别对于周边地区水资源与气候变化监测具有重要意义。全极化SAR影像包含地物表面散射、偶次散射、体散射、统计特性等丰富的特征,而深度学习能够充分挖掘影像信息,因此使用全极化SAR影像结合深度学习能够得到精确的冰川识别效果。本文基于喜马拉雅山脉西端ALOS2-PALSAR全极化影像,使用VGG16特征提取网络与全卷积神经网络模型U-net相结合的VGG16-unet对冰川进行识别。采用的特征包括极化相干矩阵对角线元素、Freeman-Durden、H/A/α、Pauli、VanZyl、Yamaguchi这5种极化分解参数共计19种特征。为了充分利用影像信息,对这些特征进行分析与组合,并比较它们之间的冰川识别精度,以选取最佳特征。由于冰川与非冰川的地形具有明显差异,因此将DEM、坡度、局部入射角等作为辅助特征与极化特征结合。通过对比不同极化特征分类精度得出,基于物理特性的Pauli、Freeman-Durden、VanZyl、Yamaguchi特征分类的精度较高,其中Pauli特征分类的精度最高,整体精度(OA)达到92.54%,平均用户交并比(mIoU)达到78.78%。加入地形数据后...
积雪作为冰冻圈重要组成部分,与全球气候变化和生态系统密切相关,精准识别积雪分布信息具有重要意义。合成孔径雷达(Synthetic Aperture Radar, SAR)数据的极化和散射特征在积雪识别中具有极大的应用潜力。以新疆玛纳斯河流域为研究区,提取全极化Radarsat-2数据后向散射特征和目标极化分解特征;为探索极化特征和散射特征对积雪识别的贡献,将获取的特征进行组合,得到3种特征集;采用随机森林算法对研究区积雪进行识别提取。结果显示,基于随机森林的Radarsat-2极化特征结合散射特征识别结果的总体精度和调和平均值(F1)达到最高,分别为83.00%和0.82,仅基于极化特征识别结果总体精度和F1分别为77.5%和0.76。研究结果表明,与单一极化特征相比,结合散射特征和极化特征能有效提高积雪识别精度,对山区大范围积雪识别具有极大的潜力。
以新疆阿尔泰山南麓克兰河流域典型区为研究区,利用GF-3全极化数据进行积雪探测,提出了一种基于特征优选的积雪识别方法。首先通过极化分解获取了GF-3数据的22个极化特征,并利用随机森林方法计算各特征的重要性,构建特征优选规则生成最优特征集,然后基于最优特征集对积雪进行识别。分析特征的重要性发现,同极化后向散射系数对积雪识别的贡献比交叉极化的贡献大,面散射和体散射对积雪识别的贡献比二面角散射贡献大。将该方法与最大似然法、支持向量机、BP神经网络3种分类器的对比发现,使用最优特征集并且利用随机森林方法的积雪识别精度最高(F指数为0.86,总体精度为0.79)。结果表明:基于特征优选进行积雪识别,不仅使得积雪识别效率得到提高,而且保持精度不变甚至有所增加,证明了该方法在积雪识别中的有效性。