格陵兰冰盖的表面融化通过物质平衡影响全球海平面上升,同时也是气候变化的灵敏指示器。本文基于增强分辨率的被动微波日亮温数据,使用自动气象站的气温记录,评估了进行冰盖表面融化探测的改进的亮温日较差(Advanced Diurnal Amplitude Variations,ADAV)方法和另外4种常用方法(M+30 K、ALA、MEMLS1和MEMLS2)的探测效果,通过总体精度和Kappa系数证实了ADAV方法探测冰盖表面融化的可行性与可靠性。在此基础上,基于ADAV方法进一步分析格陵兰冰盖表面融化的时空变化特征,发现1996—2021年格陵兰冰盖所有区域都发生过表面融化,融化最剧烈的区域分布于冰盖边缘,南部较北部融化范围更大、融化天数更多。极端融化事件导致冰盖融化范围波动较大,而融化指数呈现增长趋势,增长速率为5.24×10~5 d·km2·a-1。且表面融化具有向内陆高海拔地区扩张的趋势,融化天数为11~30 d、31~50 d、51~70 d的区域,26年间的平均高程都发生了显著的增长,增长速率分别为13.06 m·a-1
格陵兰冰盖的表面融化通过物质平衡影响全球海平面上升,同时也是气候变化的灵敏指示器。本文基于增强分辨率的被动微波日亮温数据,使用自动气象站的气温记录,评估了进行冰盖表面融化探测的改进的亮温日较差(Advanced Diurnal Amplitude Variations,ADAV)方法和另外4种常用方法(M+30 K、ALA、MEMLS1和MEMLS2)的探测效果,通过总体精度和Kappa系数证实了ADAV方法探测冰盖表面融化的可行性与可靠性。在此基础上,基于ADAV方法进一步分析格陵兰冰盖表面融化的时空变化特征,发现1996—2021年格陵兰冰盖所有区域都发生过表面融化,融化最剧烈的区域分布于冰盖边缘,南部较北部融化范围更大、融化天数更多。极端融化事件导致冰盖融化范围波动较大,而融化指数呈现增长趋势,增长速率为5.24×10~5 d·km2·a-1。且表面融化具有向内陆高海拔地区扩张的趋势,融化天数为11~30 d、31~50 d、51~70 d的区域,26年间的平均高程都发生了显著的增长,增长速率分别为13.06 m·a-1
基于MODIS温度产品,着重分析了2000—2020年格陵兰冰盖夏季表面温度和表面融化范围的年际变化趋势;联合IMBIE(冰盖物质平衡对比实验)数据分析表面温度对于冰盖物质平衡的影响;进一步讨论了大气环流对于格陵兰冰盖表面温度变化的影响。结果表明:格陵兰冰盖夏季表面温度和融化范围趋势较为一致,2000年初期呈现出显著的上升趋势,2012年达到峰值,随后波动下降;整个研究阶段北部区域是增温速率最大的区域,高于其他任何区域两倍,东南部和西南部是温度最高的区域却具有最小的增长率;格陵兰冰盖夏季表面温度、融化范围以及物质平衡之间都具有显著的相关性,同时格陵兰冰盖夏季表面温度每上升1℃,会导致其物质损失增加74.29Gt·a-1;最后,经过对北大西洋涛动(NAO)和格陵兰阻塞指数(GBI)指数的分析得到,格陵兰冰盖夏季表面温度受到GBI的影响要强于NAO的影响,冰盖夏季表面温度和NAO呈现出负相关(r=-0.64,P<0.05),和GBI呈现出正相关(r=0.77,P<0.05)。
基于MODIS温度产品,着重分析了2000—2020年格陵兰冰盖夏季表面温度和表面融化范围的年际变化趋势;联合IMBIE(冰盖物质平衡对比实验)数据分析表面温度对于冰盖物质平衡的影响;进一步讨论了大气环流对于格陵兰冰盖表面温度变化的影响。结果表明:格陵兰冰盖夏季表面温度和融化范围趋势较为一致,2000年初期呈现出显著的上升趋势,2012年达到峰值,随后波动下降;整个研究阶段北部区域是增温速率最大的区域,高于其他任何区域两倍,东南部和西南部是温度最高的区域却具有最小的增长率;格陵兰冰盖夏季表面温度、融化范围以及物质平衡之间都具有显著的相关性,同时格陵兰冰盖夏季表面温度每上升1℃,会导致其物质损失增加74.29Gt·a-1;最后,经过对北大西洋涛动(NAO)和格陵兰阻塞指数(GBI)指数的分析得到,格陵兰冰盖夏季表面温度受到GBI的影响要强于NAO的影响,冰盖夏季表面温度和NAO呈现出负相关(r=-0.64,P<0.05),和GBI呈现出正相关(r=0.77,P<0.05)。