利用羌塘国家级自然保护区边缘5个气象站1971-2017年逐月平均气温、平均最高气温、平均最低气温、降水量和逐年最大冻土深度等气象资料,以及卫星遥感资料,采用线性回归、相关系数等方法,分析了自然保护区气候(气温、降水等)、水体(湖泊、冰川)和植被等生态环境因子的变化。结果表明:近47年自然保护区年平均气温以0.46℃·(10a)-1的速率显著升高,明显高于同期全球和亚洲地表温度的升温率。四季平均气温升温率为0.37~0.55℃·(10a)-1,升幅在冬季最大、夏季最小。年降水量呈明显的增加趋势,增幅为11.0mm·(10a)-1,主要表现在春、夏两季。近43年(1975-2017年)色林错面积呈显著增加趋势,平均增长率为38.48km2·a-1。1973-2017年,普若岗日冰川面积整体上趋于减少,平均每年减少2.11km2;自然保护区年最大冻土深度变化率为-35.7cm·(10a)-1。1999-2013年保护区NDVI增幅达25....
利用1971—2016年青藏高原81个气象站逐月积雪日数和45个测站第一冻结层下界观测资料,分析了青藏高原积雪冻土的时空变化特征及其与高原植被指数(NDVI)的关系,探讨了积雪冻土下垫面变化对高原植被及沙漠化的可能影响。结果表明:1)青藏高原积雪日数分布极不均匀,巴颜喀拉山和唐古拉山为高原积雪日数的大值区,且年际变率较大。2)青藏高原积雪日数总体上呈现减少趋势,平均以3.5 d/(10 a)的速率减少,且在1998年前后发生突变,减少速率进一步加快,达到5.1 d/(10 a)。3)青藏高原第一冻结层下界呈上升趋势,达到-3.7 cm/(10 a),与青藏高原增暖紧密相关。4)青藏高原NDVI呈缓慢增加趋势,与高原气温、降水的增加趋势相一致,积雪冻土的变化对不同区域植被NDVI的影响有显著差异。在气候变暖背景下,形成的暖湿环境促进积雪消融、冻土下界提升,使土壤浅层含水量增加,有利于植被恢复和生长,其结果对高原土地沙漠化防治有一定参考作用。
冰雪作为固体淡水资源在全球部分地区水分平衡和水分利用中有着不可忽视的作用,且在全球变暖的背景下,冰雪资源的利用受到了越来越多的关注。本文综述了积雪生态效应的国内外研究进展,着重介绍了积雪消融与季节性冻土、植被、土壤微生物及融雪产流的关系等。现有的结论表明:积雪是调节土壤过程的关键性因子,积雪深度、持续时间等强烈影响着生态系统的土壤水热和微生物的动态转变及营养需求。积雪可以影响土壤呼吸过程,改变碳循环,进而影响植物的生长和群落组成;反过来,植被可以通过影响地表覆被、风向及拦截降雪等影响积雪降、融格局。文章为进一步研究积雪的生态影响机制提供了参考,并对今后的冰雪资源的研究方向提出了建议。
山地多年冻土的异质性影响其植被类型的分布特征,且对有机碳的分布也具有重要影响。通过采集黑河上游多年冻土区三种典型植被类型(高寒沼泽草甸、高寒草甸、高寒草原)8个活动层的土壤样品,测定其土壤有机碳密度及其理化性质。结果表明:高寒沼泽草甸土壤有机碳密度最高(49.50kg·m-2),高寒草甸次之(11.22 kg·m-2),高寒草原最低(7.30 kg·m-2)。土壤有机碳密度的剖面垂直分布特征具有差异性,高寒沼泽草甸土壤有机碳密度随深度变化不明显,高寒草原和高寒草甸土壤有机碳密度随深度逐渐减小,存在显著的表层聚集性。有机碳密度与土壤含水率和细粒含量呈显著正相关,与pH值呈显著负相关关系。一般线性模型结果表明土壤含水率、pH值和土壤颗粒组成解释了96.39%的有机碳密度变异,其中土壤含水率贡献了81.53%,pH值和土壤粒度分别贡献了9.33%和4.75%。研究表明多年冻土区不同植被类型土壤有机碳密度分布特征具有明显差异,山地多年冻土土壤含水率是控制有机碳密度分布特征的重要影响因素。
多年冻土对气候变化十分敏感,尤其是多年冻土上的植被,易受气候变化影响.东北多年冻土区位于北半球中、高纬度地区,是我国第二大多年冻土区,同时也是欧亚大陆多年冻土带的南缘.本文基于1981—2014年LTDR和MODIS两种数据集对东北多年冻土区植被生长季归一化植被指数(NDVI)时空变化特征进行分析,同时结合气象数据,分析植被对气候变化的响应.结果表明:研究期间,东北多年冻土区植被生长季平均NDVI呈显著增加趋势,年增加0.0036.空间逐像元NDVI变化趋势具有明显的空间异质性.研究区80.6%区域的植被NDVI具有显著增加趋势(P不连续多年冻土区>稀疏岛状多年冻土区>季节冻土区,NDVI增加趋势最大值(>0.004)所占的面积比例依次为连续多年冻土区>不连续多年冻土区>稀疏岛状多年冻土区>季节冻土区.多年冻土全区尺度下,植被生长季NDVI与平均气温呈显著正相关关系(r=0.79,P<0.01),与降...
通过对祁连山大野口流域内不同海拔梯度上的冻土冻融监测,分析评估青海云杉林、灌丛、阳坡草地3种典型植被类型冻土冻融厚度和速率变化的差异。结果表明:(1)冻土深度上限最大值为灌丛冻土>阳坡草地冻土>青海云杉林冻土;冻土深度下限最大值为灌丛冻土>青海云杉林冻土>阳坡草地冻土。(2)冻土冻结期,青海云杉林冻土变化速率最大,其次阳坡草地冻土变化速率,灌丛冻土变化速率最慢;冻土消融期,灌丛冻土变化速率最大,其次阳坡草地冻土变化速率,青海云杉林冻土变化速率最慢。(3)青海云杉林冻土过程最长,其次为灌丛冻土,阳坡草地冻土过程时间最短。建议培育青海云杉与灌丛增强祁连山涵养水源功能。
植被退化是影响陆地生态系统和气候变化的一个重要因素,分析植被退化特征对植被生态治理与保护具有重要意义。应用Mann-Kendall法对2000-2011年岛状冻土区的植被退化过程及影响植被退化的驱动因素进行分析。结果表明,植被退化区域占整个研究区面积的15.05%,其中严重退化区域比例占1.42%,其余13.63%为轻微退化;退化区域主要分布于北黑高速路段两侧地区、东北部大河口林场外围区域及河漫滩周围的沼泽地;降水量与植被指数表现为正相关性,显著性P0.05,说明降水量是植被生长的主导因子;冻土退化产生地面渗水现象,归一化植被指数骤降0.26,同时在Mann-Kendall趋势曲线中突变点发生于2006年;岛状冻土退化伴随着土壤温度梯度发生显著的变化,植物的水分传导性脆弱,生长将受到抑制作用。研究结果可为高寒区生态系统的稳定发展和探寻水热条件变化规律提供空间数据支撑。
[目的]探究祁连山地区冻土的季节性变化以及植被对祁连山季节冻土的影响,建立冻土深度与温度的关系。[方法]对比观测了祁连山排露沟小流域的阴坡青海云杉林下土壤和阳坡草地土壤冻结融化过程,定量分析土壤冻结层随季节的变化。[结果](1)祁连山区季节性冻土每年10月中下旬开始冻结,4月冻土层上界面开始融化,8月消融完毕。该冻结融化过程可划分为单向冻结、单向融化和双向融化3个阶段段。(2)青海云杉林内土壤的冻结起始时间与草地土壤基本相同,但冻结速率比草地快,最大冻结深度比草地大;青海云杉林土壤冻结层融化阶段的起始时间亦与草地基本相同,融化速率相近,但青海云杉林下冻土融化持续的时间更长。(3)积温决定土壤冻结融化进程,当冻结小时积温达到约-460℃·h,土壤开始冻结;当小时积温达到约62℃·h,土壤冻结层的上界面开始融化。[结论]土壤冻结层深度与小时积温的相关系数达到0.9以上,可用于预测预报冻土的冻结状态。
在全球气候变暖的背景下,青藏高原的多年冻土出现了不断退化的现象.退化的多年冻土隔水作用减弱或消失,并导致依赖于冻结层上水的植被变化.在模拟高原多年冻土分布的基础上,分析了冻土的退化过程植被覆盖度的变化,结果表明,冻土的变化可分为3个阶段:冻土稳定段(80年代)、冻土快速退化段(90年代)和冻土缓慢退化段(最近十几年).同时,采用GIMMS(global inventory modeling and mapping studies)第3代NDVI数据(1982—2012年)分析青藏高原植被覆盖度的斜率变化特征,结果显示:在近31a来,青藏高原的植被覆盖度斜率整体上呈微弱增加趋势;植被覆盖在冻土退化的3个时段内的变化特征为:从20世纪80年代冻土相对稳定期到90年代的冻土退化期,比退化面积增大11%;近十几年来,冻土退化逐步减缓,植被退化的增幅减弱,面积比90年代增大了3%,但退化的区域更为集中.冻土退化与植被的变化机制复杂,本文的分析与发现对理解冻土对生态的影响有一定的意义.