为探究微型水泥钢管桩在多年冻土地区的适应性,以某输油管道阀室建筑基础项目为依托,通过现场试验和数值模拟研究桩基的承载模式及桩周土的回冻规律。研究表明,桩基荷载沉降曲线变形较缓,承载模式表现出摩擦桩特性,且承载力满足设计要求;水泥入模温度5℃,施工完成后,桩周土体融化圈在第5d时达到峰值,第36d完全消失,桩周土体重新回冻;桩基水化热影响最大半径因位置差异而存在不同,桩周土体初始温度最高的位置影响半径最大,约为2.9倍桩径;与大直径桩基相比,微型水泥钢管桩的回冻时间和影响半径分别约为大直径桩基的1/4和1/3。研究结果表明,在多年冻土地区微型水泥钢管桩具有较好的适应性。
活动层内部的冻融锋面是冻融过程中冻结土层与融化土层的分界面,其上下土层的水热参数有着显著差异。在陆面过程模式中准确描述冻融锋面的移动过程将有助于提高其对多年冻土水热过程的模拟能力。本研究首先将Noah-MP陆面过程模式的模拟深度扩展到20 m,并将原模式的4层土层增加到19层土层,同时引入前人的有机质方案和植被根系方案,然后在此基础上,通过耦合Stefan方法以加强模式对冻融锋面的模拟能力,进而探究耦合Stefan方法的Noah-MP模式对西大滩多年冻土站点水热过程的模拟效果。研究中设置了不耦合Stefan方法的CTL控制试验和耦合Stefan方法的STE对照试验来分别模拟西大滩多年冻土站点2012年0~20 m的土壤温度与土壤液态含水量,模拟结果用站点0~3.2 m内10个深度的日均土壤温度、土壤液态水含量监测数据以及3 m、6 m和10 m的年均地温监测数据来做验证。研究结果表明,由土壤温度模拟值插值得到的冻融锋面(0℃等温线)有明显阶梯状特征,最大冻融深度与实测相比偏大。耦合Stefan方法增强了Noah-MP模式模拟冻融锋面的能力,使得模式能够基于Stefan方法较好地模拟出冻...
冻土的动态拉伸强度和破坏特性在涉及冻土工程高效破碎和安全稳定性分析领域具有重要的参考价值。为研究负温和加载率对冻土动态拉伸性能的影响,利用铝质分离式Hopkinson压杆试验系统开展了冻土的动态巴西圆盘劈裂试验,结合高速摄像系统,分析了温度和加载率对冻土动态拉伸强度、能量耗散和破坏模式的影响,探讨了冻土巴西圆盘的劈裂破坏机理及动态拉伸强度的影响因素。结果表明:冲击荷载作用下,冻结黏土和冻结砂土巴西圆盘试样均遵循中心起裂的破坏模式,试件破坏为沿轴向相对完整的两半;随着冲击气压的增加,两种冻土的加载率均呈线性增大;两种冻土达到动态拉伸峰值应力所需的时间在92~242μs范围内;两种冻土的动态拉伸强度均存在明显的温度效应和加载率效应,动态拉伸强度随温度的降低和加载率的增加而增大;不同负温条件下两种冻土的吸收能与动态拉伸强度均存在较好的线性关系;冲击气压的增加会导致冻土试样的破坏程度加剧,高剪切应力引起的三角破碎区面积逐渐增大。
输电线路工程现已成为我国冻土工程的重要组成部分,而桩基础是冻土区输电线路杆塔较为通用的基础型式。输电铁塔是典型的高耸结构,抗拔与抗倾覆稳定性是铁塔基础设计的主要控制条件。通过回顾国内外相关文献,发现冻土区桩基础抗拔承载性能研究相对较少,尤其是上拔与水平荷载共同作用时,对其承载机理、荷载传递规律等认知模糊不清,给冻土区桩基础设计带来不便。为此,采用数值计算方法,分析了季节冻土区与多年冻土区粉质黏土、砾砂地基中桩基础抗拔承载性能。结果表明:冻土区桩基础破坏以上拔为主;上拔荷载-位移曲线呈缓变型;同种地基土质条件下,相较融化期,冻结期桩基础抗拔承载力提高20%;相较粉质黏土,砾砂地基承载力提高20%;随着水平荷载增加,桩顶竖向位移增大,导致桩基抗拔承载力下降。
为了探讨VIC(Variable infiltration capacity)水文模型在季节性冻土区水文模拟中的适用性,以大凌河复兴堡站以上流域为研究区,构建了考虑能量平衡模式的VIC大尺度水文模型,评价了VIC模型在东北季节性冻土区水文模拟的适用性,并对不考虑能量平衡模式的水文模拟进行了比较分析。结果表明,考虑能量平衡模式的VIC模型率定期和验证期径流模拟效率系数在0.63以上,相对误差在6.0%以内。与不考虑能量平衡模式的水文过程模拟差异性比较显示,考虑了能量平衡模式的VIC模型可以更好地刻画由于冻土冻融过程引起的径流变化特征,模拟的土壤含水量和蒸散发量的空间分布特征更加合理。
不同初始值对多年冻土水热过程的模拟有着深刻的影响。本文利用青藏高原三江源多年冻土区西大滩站观测数据,驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对该站多年冻土进行为期14个月的模拟研究。设计三组试验,检验CLM4.5模式对多年冻土模拟性能,探究不同初始土壤温度、液态水含量以及含冰量对模拟结果的影响,并对土壤初始含冰量的计算进行改进,提高了模式对多年冻土水热过程的模拟。通过对比土壤含冰量模拟值,液态水含量和土壤温度观测值与模拟值,结果表明:(1)初始土壤温度、液态水含量会通过影响初始土壤含冰量进而影响CLM4.5模式对多年冻土水热过程的模拟。(2)CLM4.5默认初始土壤温度、液态水含量时,计算出的初始含冰量为0 m3·m-3,这使得模式不能准确模拟出多年冻土的特征。在2015年11月上旬至2016年8月上旬土壤含冰量大于0.01m3·m-3,其余时段土壤含冰量几乎为0 m3·m-3;整层土壤液态水含量从冬...
利用位于季节冻土区的中国科学院那曲高寒气候环境观测研究站那曲/BJ观测点的野外观测数据,通过CLM4.5的单点模拟实验,分析评估了Luo土壤热导率参数化方案、Johansen土壤热导率参数化方案、C?té土壤热导率参数化方案和虚温参数化方案对土壤温、湿度的模拟能力,为将来选取最优的参数及参数化方案来更合理的模拟青藏高原土壤冻融过程为目的的工作提供依据。结果表明:(1)三种土壤热导率参数化方案模拟结果的土壤热传导率有明显差异,其中C?té方案的土壤热传导率最高,Luo方案的土壤热传导率最低。(2)三种热传导率方案均能合理地模拟出土壤温湿度的日变化趋势,Johansen方案对土壤温度年变化趋势模拟的更好,C?té方案对土壤温度模拟的数值较观测值偏离的更小,Luo方案对土壤湿度的模拟更好。(3)加入虚拟温度方程,并引入相变效率参数后,减少了模式对土壤湿度模拟的负偏差,Y-L方案在保持土壤温度较好模拟能力的基础上,能够进一步的提升土壤湿度的模拟能力。
冻土在气候系统中起重要作用,研究并揭示冻土时空变化对于增加陆气相互作用的理解具有重要意义。本研究利用包含土壤冻结融化界面动态变化的陆面过程模式CAS-LSM(Chinese Academy of Sciences Land Surface Model),采用0.9°(纬度)×1.25°(经度)分辨率,结合4种大气强迫数据(全球土壤湿度项目强迫数据集GSWP3、美国国家大气研究中心/美国国家环境预报中心强迫数据集CRU-NCEP、普林斯顿全球强迫数据集Princeton、全球变化以及水文观测项目强迫数据集WFDEI)针对1960~2009年进行全球模拟,研究不同大气强迫作用下多年冻土活动层厚度变化趋势及其不确定性。通过与活动层厚度观测数据比较,陆面过程模式CASLSM模拟的活动层厚度与观测值比较接近。结果表明:在1960~2009年期间,不同大气强迫作用下多年冻土活动层厚度基本呈现增加的趋势,基于强迫数据WFDEI模拟的活动层厚度增加趋势最大。不同大气强迫数据模拟的活动层厚度区域平均和变化趋势范围为1.1~1.25 m和0.27~0.51 cm/a,相对变化的不确定性范围为11.2%~2...
在青藏高原多年冻土区根据490个植被调查样点数据和3种遥感数据集的27个变量,利用决策树分类模型,模拟出4种代表性浓度路径情景下10个气候系统模式在2050年和2070年的青藏高原高寒草地类型(高寒沼泽草甸、高寒草甸、高寒草原、高寒荒漠和裸地)潜在分布结果。同时为保证数据分析的一致性,利用数据对当前高原草地类型也进行了反演。结果表明:相比当前高寒草地分布面积,预计在2050年和2070年裸地和高寒草甸面积微弱减少,高寒草原和高寒荒漠面积在微弱增加,高寒沼泽草甸面积变化不明显。结果在4种代表性浓度路径情景下的表现基本一致,研究不仅可以为高寒草地气候变化研究提供植被类型相关的数据支持,还可以为青藏高原多年冻土区碳循环的探讨提供部分的方法和理论依据。
天然气水合物是一种极具潜力的新型能源,中国陆域永久冻土区天然气水合物资源具有极大的潜力。本文根据中国地质调查局在祁连山地区、羌塘盆地和漠河盆地天然气水合物远景区取得的大量地球化学调查数据和成果,分析总结了冻土区的温压条件、冻土条件、气源条件等,探讨了冻土区天然气水合物的成矿机制和制约因素,初步建立了冻土区天然气水合物的成藏模式,以期为下一轮的冻土区天然气水合物勘查提供地球化学技术支撑。