西南亚高山森林是典型的季节性冻土区,为深入研究气候变暖背景下冻融循环变化对森林土壤环境的影响,该研究以西南亚高山森林乔木层与灌木层优势种云杉(Picea asperata)和华西箭竹(Fargesia nitida)根区土壤为研究对象,利用红外辐射加热器模拟气候变暖,研究增温对非生长季土壤冻融循环、土壤理化性质和酶活性的影响。在此基础上,开展室内培养实验,进一步验证冻融循环变化对土壤性质的影响。结果表明:(1)与对照小区比较,增温小区5cm和15cm土层温度分别升高2.85和2.13℃,冻结天数分别减少了60和32天,冻融循环次数分别由3次和1次降为0次。(2)增温增加了两物种根区土壤总氮(TN)、可溶性有机氮(DON)和微生物生物量氮(MBN)含量,但降低了土壤铵态氮(NH4+-N)含量。土壤冻结天数、冻融循环次数与TN、DON含量显著负相关,与NH4+-N含量显著正相关。(3)增温显著促进了两树种根区土壤N-乙酰-β-D-葡萄糖苷酶(NAG)活性,但显著抑制了脲酶(Ure)活性。土壤冻结天数、冻...
西南亚高山森林是典型的季节性冻土区,为深入研究气候变暖背景下冻融循环变化对森林土壤环境的影响,该研究以西南亚高山森林乔木层与灌木层优势种云杉(Picea asperata)和华西箭竹(Fargesia nitida)根区土壤为研究对象,利用红外辐射加热器模拟气候变暖,研究增温对非生长季土壤冻融循环、土壤理化性质和酶活性的影响。在此基础上,开展室内培养实验,进一步验证冻融循环变化对土壤性质的影响。结果表明:(1)与对照小区比较,增温小区5cm和15cm土层温度分别升高2.85和2.13℃,冻结天数分别减少了60和32天,冻融循环次数分别由3次和1次降为0次。(2)增温增加了两物种根区土壤总氮(TN)、可溶性有机氮(DON)和微生物生物量氮(MBN)含量,但降低了土壤铵态氮(NH4+-N)含量。土壤冻结天数、冻融循环次数与TN、DON含量显著负相关,与NH4+-N含量显著正相关。(3)增温显著促进了两树种根区土壤N-乙酰-β-D-葡萄糖苷酶(NAG)活性,但显著抑制了脲酶(Ure)活性。土壤冻结天数、冻...
采用开顶室(OTC)模拟增温的方法,设置增温组(OTC,模拟增温)和对照组(CK,无处理),通过连续1 a(2019年11月—2020年10月)的野外原位观测试验,探讨了模拟增温对兴安落叶松(Larix gmelinii)林内各层土壤(5、10、15、20 cm)以及地上1.5 m处空气温湿度的影响。结果表明:(1)与对照相比,OTC内地下5~20 cm土壤年均温度依次增幅1.18、1.83、1.69、1.29℃,地上空气温度增幅1.18℃;土壤年均湿度较CK依次降低2.31%、1.85%、1.14%、5.07%,空气湿度降低2.15%。土壤年均温度在各层次间无显著差异。20 cm的土壤湿度最高,且显著高于其他土层。(2)土壤和空气月均温度在模拟增温和对照处理下均呈“先下降后上升”的趋势;增温处理下的空气温度高于对照。土壤湿度月变化呈现出生长季(6—9月)变化波动大,非生长季(10月—翌年5月)变化波动小的趋势。(3)模拟增温处理下,5、10 cm土壤温度在秋季具有显著差异。(4)模拟增温和对照处理下,夏季夜间的15、20 cm土壤湿度与5、10 cm间的差异具有显著性。综上,开顶室能...
采用开顶室(OTC)模拟增温的方法,设置增温组(OTC,模拟增温)和对照组(CK,无处理),通过连续1 a(2019年11月—2020年10月)的野外原位观测试验,探讨了模拟增温对兴安落叶松(Larix gmelinii)林内各层土壤(5、10、15、20 cm)以及地上1.5 m处空气温湿度的影响。结果表明:(1)与对照相比,OTC内地下5~20 cm土壤年均温度依次增幅1.18、1.83、1.69、1.29℃,地上空气温度增幅1.18℃;土壤年均湿度较CK依次降低2.31%、1.85%、1.14%、5.07%,空气湿度降低2.15%。土壤年均温度在各层次间无显著差异。20 cm的土壤湿度最高,且显著高于其他土层。(2)土壤和空气月均温度在模拟增温和对照处理下均呈“先下降后上升”的趋势;增温处理下的空气温度高于对照。土壤湿度月变化呈现出生长季(6—9月)变化波动大,非生长季(10月—翌年5月)变化波动小的趋势。(3)模拟增温处理下,5、10 cm土壤温度在秋季具有显著差异。(4)模拟增温和对照处理下,夏季夜间的15、20 cm土壤湿度与5、10 cm间的差异具有显著性。综上,开顶室能...
以青藏高原腹地典型高寒草甸植被类型为研究对象,采用红外灯加热的方法模拟全球增温,并利用水分探头,于2012年植物生长季(5—9月)获取0~100 cm不同土层深度土壤水分含量数据,并分析其对增温的响应。结果表明:(1)短期增温对高寒草甸土壤水分含量有提高作用,但增幅并不显著(P> 0. 05),平均提高2. 85%。(2)土壤水分含量随土层深度的增加呈现先减少后增加的趋势,在10~20 cm土层深度处降为最低值13. 8%,在60~100cm土层深度附近达到了20. 57%的最高值;对照组5个月10~20 cm土层深度的土壤水分含量显著低于其他土层,而增温组0~20 cm土层深度的土壤含水量显著低于其他土层深度,表明增温对表层(0~10 cm)的土壤含水量影响较大,对深层土壤含水量的影响则较小,而且短期增温不会对土壤水分的垂直分布趋势产生影响。(3)土壤水分含量随时间的变化,在5—8月呈上升趋势,表明在青藏高原北麓河地区植物生长季,8月是其土壤水分含量最充足的月份,到了9月土壤中含水量开始降低,但5个土层深度降幅均不明显;增温组土壤水分含量随时间的变化趋势与对照组基本一致。
以青藏高原腹地典型高寒草甸植被类型为研究对象,采用红外灯加热的方法模拟全球增温,并利用水分探头,于2012年植物生长季(5—9月)获取0~100 cm不同土层深度土壤水分含量数据,并分析其对增温的响应。结果表明:(1)短期增温对高寒草甸土壤水分含量有提高作用,但增幅并不显著(P> 0. 05),平均提高2. 85%。(2)土壤水分含量随土层深度的增加呈现先减少后增加的趋势,在10~20 cm土层深度处降为最低值13. 8%,在60~100cm土层深度附近达到了20. 57%的最高值;对照组5个月10~20 cm土层深度的土壤水分含量显著低于其他土层,而增温组0~20 cm土层深度的土壤含水量显著低于其他土层深度,表明增温对表层(0~10 cm)的土壤含水量影响较大,对深层土壤含水量的影响则较小,而且短期增温不会对土壤水分的垂直分布趋势产生影响。(3)土壤水分含量随时间的变化,在5—8月呈上升趋势,表明在青藏高原北麓河地区植物生长季,8月是其土壤水分含量最充足的月份,到了9月土壤中含水量开始降低,但5个土层深度降幅均不明显;增温组土壤水分含量随时间的变化趋势与对照组基本一致。
以青藏高原腹地典型高寒草甸植被类型为研究对象,采用红外灯加热的方法模拟全球增温,并利用水分探头,于2012年植物生长季(5—9月)获取0~100 cm不同土层深度土壤水分含量数据,并分析其对增温的响应。结果表明:(1)短期增温对高寒草甸土壤水分含量有提高作用,但增幅并不显著(P> 0. 05),平均提高2. 85%。(2)土壤水分含量随土层深度的增加呈现先减少后增加的趋势,在10~20 cm土层深度处降为最低值13. 8%,在60~100cm土层深度附近达到了20. 57%的最高值;对照组5个月10~20 cm土层深度的土壤水分含量显著低于其他土层,而增温组0~20 cm土层深度的土壤含水量显著低于其他土层深度,表明增温对表层(0~10 cm)的土壤含水量影响较大,对深层土壤含水量的影响则较小,而且短期增温不会对土壤水分的垂直分布趋势产生影响。(3)土壤水分含量随时间的变化,在5—8月呈上升趋势,表明在青藏高原北麓河地区植物生长季,8月是其土壤水分含量最充足的月份,到了9月土壤中含水量开始降低,但5个土层深度降幅均不明显;增温组土壤水分含量随时间的变化趋势与对照组基本一致。
以青藏高原腹地典型高寒草甸植被类型为研究对象,采用红外灯加热的方法模拟全球增温,并利用水分探头,于2012年植物生长季(5—9月)获取0~100 cm不同土层深度土壤水分含量数据,并分析其对增温的响应。结果表明:(1)短期增温对高寒草甸土壤水分含量有提高作用,但增幅并不显著(P> 0. 05),平均提高2. 85%。(2)土壤水分含量随土层深度的增加呈现先减少后增加的趋势,在10~20 cm土层深度处降为最低值13. 8%,在60~100cm土层深度附近达到了20. 57%的最高值;对照组5个月10~20 cm土层深度的土壤水分含量显著低于其他土层,而增温组0~20 cm土层深度的土壤含水量显著低于其他土层深度,表明增温对表层(0~10 cm)的土壤含水量影响较大,对深层土壤含水量的影响则较小,而且短期增温不会对土壤水分的垂直分布趋势产生影响。(3)土壤水分含量随时间的变化,在5—8月呈上升趋势,表明在青藏高原北麓河地区植物生长季,8月是其土壤水分含量最充足的月份,到了9月土壤中含水量开始降低,但5个土层深度降幅均不明显;增温组土壤水分含量随时间的变化趋势与对照组基本一致。
采用红外辐射灯(infrared heater)模拟气候变暖背景,研究青藏高原多年冻土区高寒草甸优势植物种珠芽蓼(Polygonum viviparum)、美丽风毛菊(Saussurea superb)和黑褐苔草(Carex atrofusca)的生长发育及光合特性对气候变暖的短期响应及其差异性,旨在为评价草地生态系统的敏感性和脆弱性提供科学依据。结果表明,模拟增温W1(1.88℃)和W2(3.19℃)均可改变高寒草甸物种分布的频度和季节分布格局,并显著影响植被高度和光合色素含量,影响程度存在种间差异性。与不增温对照相比,W1增温下物种具有不同的响应,美丽风毛菊的高度、频度和叶绿素含量均呈下降趋势,而珠芽蓼和黑褐苔草均呈增加趋势。W2增温显著增加了珠芽廖和黑褐苔草的高度、频度和叶绿素含量(P<0.05),却显著降低了美丽风毛菊的叶绿素a/b值(P<0.05)。物种间光合特性存在显著差异(P<0.05),样地间差异性表现更为突出,但增温处理间变化不明显。这说明增温可促进高寒草甸牧草类植物的生长发育,延长青草期,有利于牧业生产,但斑块状分布明显。
采用红外辐射灯(infrared heater)模拟气候变暖背景,研究青藏高原多年冻土区高寒草甸优势植物种珠芽蓼(Polygonum viviparum)、美丽风毛菊(Saussurea superb)和黑褐苔草(Carex atrofusca)的生长发育及光合特性对气候变暖的短期响应及其差异性,旨在为评价草地生态系统的敏感性和脆弱性提供科学依据。结果表明,模拟增温W1(1.88℃)和W2(3.19℃)均可改变高寒草甸物种分布的频度和季节分布格局,并显著影响植被高度和光合色素含量,影响程度存在种间差异性。与不增温对照相比,W1增温下物种具有不同的响应,美丽风毛菊的高度、频度和叶绿素含量均呈下降趋势,而珠芽蓼和黑褐苔草均呈增加趋势。W2增温显著增加了珠芽廖和黑褐苔草的高度、频度和叶绿素含量(P<0.05),却显著降低了美丽风毛菊的叶绿素a/b值(P<0.05)。物种间光合特性存在显著差异(P<0.05),样地间差异性表现更为突出,但增温处理间变化不明显。这说明增温可促进高寒草甸牧草类植物的生长发育,延长青草期,有利于牧业生产,但斑块状分布明显。