针对多年冻土地区输电线路灌注桩基础的桩周温度场热影响问题,传统的研究建立在混凝土绝热升温的假设上,这种假设与实际不符并对计算结果产生影响。为了更好地规划后续工程施工,需要对传统计算进行优化。为了确定水化热放热过程对结果的影响,以实际桩基工程为例,分析了混凝土在绝热升温与带热源升温两种假设前提下温度场的变化规律,并比较了两种假设下土层以及桩身变化规律的区别。结果表明:带热源升温情况下桩底的回冻时间比绝热升温短5 d;同时建议桩基施工时要选择合理的施工工艺,对地基土质尽可能选择含水量低、传热系数高、容积热容小的冻土类型。
采用带权正交基函数对传统的无网格法中的基函数进行了改进,避免了计算过程中可能出现的矩阵不可逆情况,而且编程容易实现且计算效率高。并将其应用到冻土区桩基包括了热传导和相变潜热的温度场中,同时考虑了混凝土水化热释放对桩周冻土的影响,将计算结果和有限元计算结果及现场实测数据进行了比较分析,从趋势和最大数值看都反映了实测曲线的趋势,又把不同深度处桩侧和不同桩径处温度随时间的变化规律计算结果和有限元计算结果做了对比,都验证了该方法的可行性和优越性。
为研究混凝土入模温度、水化热对桩周冻土带来的热影响问题,以共玉公路查拉坪大桥桩基作为原型,设计了室内模型试验,研究了入模温度、水化热对冻土的热影响规律。研究结果表明,入模温度的影响时间为0~100min,200~300min为水化热影响期,入模温度对冻土的热影响程度大于混凝土水化热。入模温度最大影响范围是3倍桩径,1倍桩径以内为入模温度主要影响区,1~3倍桩径为入模温度和水化热共同影响区,3倍桩径以上为水化热影响区。入模温度及水化热在深度上影响范围是70~150cm,70cm以上冻土温度受外界环境影响较大,150cm以下冻土温度受下边界条件影响较大。
通过模拟冻土地区地质条件,制作了CFG群桩室内模型,并进行了桩-冻土温度场观测试验。应用ABAQUS对混凝土水化热影响下群桩与冻土的温度进行数值计算,并将计算结果与试验数据进行对比分析且分析结果吻合较好,确定了ABAQUS软件对冻土地区CFG群桩温度分析的适用性,从而分析混凝土水化热影响下群桩与冻土的温度场分布规律、不同混凝土入模温度对模型温度场的影响。
施工过程中混凝土的入模温度和水化热对多年冻土区桩基施工期间的热稳定性具有重要影响.针对该问题,利用有限元方法定量研究了±400 kV青藏直流输电线路冻土区锥柱基础入模温度、水化热和含冰量对桩基回冻过程、温度场变化和桩底融化深度的影响规律.结果表明:水化热影响下,桩基中心温度在第3天达到最高,桩底滞后1 d,基坑表面受其影响较小,主要受环境温度影响;第24天,桩底出现最大融化层,随着入模温度增加,融化层厚度相应增加,入模温度为6℃时融化层厚度为34 cm,15℃时为55 cm;入模温度越高,回冻时间越长,当入模温度为6℃时,完全回冻需经历52 d,15℃时,回冻时间将增加7 d.含冰量对桩底融化深度有影响,含冰量越大底部融化深度越小;冻土年平均地温是影响桩底融化深度的重要因素,少冰高温(-0.52℃)、低温(-1.5℃和-2.5℃)冻土条件下,最大融化层厚度分别为38 cm、34 cm和25 cm.基于上述结果,在多年冻土地区的桩基工程,建议混凝土入模温度为6~8℃,底部碎石垫层至少40 cm.
多年冻土地区群桩基础的施工,对冻土温度场造成了较大的影响,这对工程施工及病害防护提出了新的要求。文中模拟冻土地区地质条件,建立CFG群桩室内模型,进行桩-土温度场观测;通过数据分析冻土地区CFG群桩温度场分布规律、桩间水化热叠加效应、桩基温度和冻土温度随时间变化规律等问题,以便能采取有效地措施防治病害的发生。
针对内蒙古自治区根河至满归出口公路一在建桥涵基础,考虑相变、热生成及材料非线性,用有限元法模拟了现浇混凝土中的水化热以及开挖回填等动态施工过程对冻土地基温度场的影响,对基础下设的绝热保温层厚度以及预留边界进行了探讨,预测了未来50年的最大融深,总结了一些有价值的结论。
针对冻土区灌注桩基础施工会给冻土引进一定的热量,破坏冻土的稳定冻结状态问题,研究水化热对桩基沿径向温度变化规律及影响桩周冻土温度场的时间。基于桩和冻土的三维非稳态温度场控制方程,并考虑边界条件和冻融相变过程,建立了桩基非稳态温度场控制方程。对桩周温度场的热影响分析表明,浇筑混凝土后水化热在第5 d达到最大,水化热对桩长范围内桩侧土体径向温度变化的影响程度大于桩底面以下土体径向受水化热影响程度,水化热对桩周围土体有较大的影响而且时间长。得出的一些结论可为冻土区桩基设计施工提供参考。
针对多年冻土地区灌注桩施工桩周温度场的热影响问题,研究水化热对桩基沿径向温度变化规律及影响半径问题。基于非稳态温度场控制方程,分别建立了桩和冻土的三维非稳态温度场控制方程,并考虑边界条件和冻融相变过程,最终建立了桩基非稳态温度场的有限元计算模型。运用该模型对实际工程中灌注桩基产生的水化热对桩周温度场的热影响问题进行分析,得出浇筑混凝土后,不同深度处随龄期增加沿径向桩基温度变化规律及水化热引起较大热扰动半径约为6倍桩径,水化热对桩周围土体有较大的影响而且时间长,应采取措施减小混凝土水化热,从而达到减小冻土区桩基热影响问题。
以传热学为基础,考虑地质条件、冻土初始地温场的影响及相变效应,在自然回冻状态下,给出冻土地区桩基温度场的二维控制微分方程及初始边界条件。结合试桩工程实例,建立二维数值模型,数值方法求解的计算值与实测值吻合较好。分析了钻孔灌注桩与冻土回冻过程,得出了灌注桩浇筑混凝土后桩体温度分布不均匀,呈非线性变化;确定了灌注桩的热扰动核心区域。