黄河源区冻土空间分布异常复杂,冻土因其特殊的水热物理性质显著影响水源涵养功能,然而冻土影响下的水源涵养空间格局尚未得到充分研究。本文基于InVEST模型模拟黄河源区水源涵养量空间分布变化,同时对黄河源区冻土变化及其对水源涵养的影响进行了研究。结果表明,1980—2019年间,黄河源区多年平均水源涵养量为41.15±14.55 mm,受降水作为主控因素的影响,其整体以(0.10±0.08)mm/a(p>0.05)的速率增加,季节冻土区增加速率(0.09±0.09)mm/a(p>0.05)略高于多年冻土区(0.07±0.07)mm/a(p>0.05);当前,季节冻土区平均水源涵养量约为多年冻土区的1.29倍。多年冻土顶板温度(TTOP)对水源涵养量的单因子解释力为0.20,其多因子交互作用均强于单因子作用。空间回归分析和自相关分析表明,TTOP与水源涵养量呈显著的协同关系,而活动层厚度(ALT)及最大季节冻深(MSFD)均与水源涵养量呈权衡关系。在回归性上,TTOP与水源涵养量回归系数由西北向东南递增,正相关区域集中在季节冻土区;ALT与水源涵养量的回归系数由南向北递增,...
黄河源区冻土空间分布异常复杂,冻土因其特殊的水热物理性质显著影响水源涵养功能,然而冻土影响下的水源涵养空间格局尚未得到充分研究。本文基于InVEST模型模拟黄河源区水源涵养量空间分布变化,同时对黄河源区冻土变化及其对水源涵养的影响进行了研究。结果表明,1980—2019年间,黄河源区多年平均水源涵养量为41.15±14.55 mm,受降水作为主控因素的影响,其整体以(0.10±0.08)mm/a(p>0.05)的速率增加,季节冻土区增加速率(0.09±0.09)mm/a(p>0.05)略高于多年冻土区(0.07±0.07)mm/a(p>0.05);当前,季节冻土区平均水源涵养量约为多年冻土区的1.29倍。多年冻土顶板温度(TTOP)对水源涵养量的单因子解释力为0.20,其多因子交互作用均强于单因子作用。空间回归分析和自相关分析表明,TTOP与水源涵养量呈显著的协同关系,而活动层厚度(ALT)及最大季节冻深(MSFD)均与水源涵养量呈权衡关系。在回归性上,TTOP与水源涵养量回归系数由西北向东南递增,正相关区域集中在季节冻土区;ALT与水源涵养量的回归系数由南向北递增,...
黄河源区冻土空间分布异常复杂,冻土因其特殊的水热物理性质显著影响水源涵养功能,然而冻土影响下的水源涵养空间格局尚未得到充分研究。本文基于InVEST模型模拟黄河源区水源涵养量空间分布变化,同时对黄河源区冻土变化及其对水源涵养的影响进行了研究。结果表明,1980—2019年间,黄河源区多年平均水源涵养量为41.15±14.55 mm,受降水作为主控因素的影响,其整体以(0.10±0.08)mm/a(p>0.05)的速率增加,季节冻土区增加速率(0.09±0.09)mm/a(p>0.05)略高于多年冻土区(0.07±0.07)mm/a(p>0.05);当前,季节冻土区平均水源涵养量约为多年冻土区的1.29倍。多年冻土顶板温度(TTOP)对水源涵养量的单因子解释力为0.20,其多因子交互作用均强于单因子作用。空间回归分析和自相关分析表明,TTOP与水源涵养量呈显著的协同关系,而活动层厚度(ALT)及最大季节冻深(MSFD)均与水源涵养量呈权衡关系。在回归性上,TTOP与水源涵养量回归系数由西北向东南递增,正相关区域集中在季节冻土区;ALT与水源涵养量的回归系数由南向北递增,...
黄河源区是黄河流域的重要产水区和水源涵养区,近年来气候变暖导致黄河源区冻土退化加速、多年冻土活动层逐渐增厚。冻土的变化使黄河源区的水资源和涵养功能研究变得更复杂。研究明晰多年冻土变化状况、量化评估水源涵养量对多年冻土变化的响应,对黄河流域及青藏高原水资源科学管理具有重要意义。基于水文、气象及冻土等多源数据,对黄河源区多年冻土变化对流域地表径流和水源涵养量的影响进行了具体分析。结果表明:(1)1960—2020年间,黄河源区多年冻土呈退化趋势,活动层厚度增加10~25 cm,多年冻土集中分布区域逐渐缩小,到2020年部分区域多年冻土已退化消失。(2)黄河源区水源涵养量呈波动上升趋势,1979—2018年间有14年为负值,26年为正值,表明水资源总体上补给大于消耗。自1998年实施水量调度和退耕还林还草政策以来,水源涵养量逐步提升。(3)随着多年冻土退化(活动层厚度的增加),水源涵养量呈增加趋势;源头至黄河沿站和吉迈站至门堂站区域的水源涵养量变化,对多年冻土退化的响应最为显著。本研究有关结论可为黄河流域水资源管理和科学利用提供参考。
黄河源区是黄河流域的重要产水区和水源涵养区,近年来气候变暖导致黄河源区冻土退化加速、多年冻土活动层逐渐增厚。冻土的变化使黄河源区的水资源和涵养功能研究变得更复杂。研究明晰多年冻土变化状况、量化评估水源涵养量对多年冻土变化的响应,对黄河流域及青藏高原水资源科学管理具有重要意义。基于水文、气象及冻土等多源数据,对黄河源区多年冻土变化对流域地表径流和水源涵养量的影响进行了具体分析。结果表明:(1)1960—2020年间,黄河源区多年冻土呈退化趋势,活动层厚度增加10~25 cm,多年冻土集中分布区域逐渐缩小,到2020年部分区域多年冻土已退化消失。(2)黄河源区水源涵养量呈波动上升趋势,1979—2018年间有14年为负值,26年为正值,表明水资源总体上补给大于消耗。自1998年实施水量调度和退耕还林还草政策以来,水源涵养量逐步提升。(3)随着多年冻土退化(活动层厚度的增加),水源涵养量呈增加趋势;源头至黄河沿站和吉迈站至门堂站区域的水源涵养量变化,对多年冻土退化的响应最为显著。本研究有关结论可为黄河流域水资源管理和科学利用提供参考。
黄河源区是黄河流域的重要产水区和水源涵养区,近年来气候变暖导致黄河源区冻土退化加速、多年冻土活动层逐渐增厚。冻土的变化使黄河源区的水资源和涵养功能研究变得更复杂。研究明晰多年冻土变化状况、量化评估水源涵养量对多年冻土变化的响应,对黄河流域及青藏高原水资源科学管理具有重要意义。基于水文、气象及冻土等多源数据,对黄河源区多年冻土变化对流域地表径流和水源涵养量的影响进行了具体分析。结果表明:(1)1960—2020年间,黄河源区多年冻土呈退化趋势,活动层厚度增加10~25 cm,多年冻土集中分布区域逐渐缩小,到2020年部分区域多年冻土已退化消失。(2)黄河源区水源涵养量呈波动上升趋势,1979—2018年间有14年为负值,26年为正值,表明水资源总体上补给大于消耗。自1998年实施水量调度和退耕还林还草政策以来,水源涵养量逐步提升。(3)随着多年冻土退化(活动层厚度的增加),水源涵养量呈增加趋势;源头至黄河沿站和吉迈站至门堂站区域的水源涵养量变化,对多年冻土退化的响应最为显著。本研究有关结论可为黄河流域水资源管理和科学利用提供参考。
将PSR模型引入到生态修复效果评估方法研究中,构建了目标层、准则层、要素层和指标层4个层次,包括人类活动、水文气象、土地覆盖、生态系统健康、水源涵养服务功能、景观格局、社会经济7个方面14个指标的生态修复效果评估指标体系;采用AHP法确定了指标的权重值,并运用加权平均法的思路,构建了生态修复效果综合指数的计算方法。采用该指标体系和评估方法对2000、2005、2010、2015、2020年祁连山冰川与水源涵养功能区生态修复效果综合指数进行了估算。结果表明:近20年生态修复效果综合指数排序为ESI2010
将PSR模型引入到生态修复效果评估方法研究中,构建了目标层、准则层、要素层和指标层4个层次,包括人类活动、水文气象、土地覆盖、生态系统健康、水源涵养服务功能、景观格局、社会经济7个方面14个指标的生态修复效果评估指标体系;采用AHP法确定了指标的权重值,并运用加权平均法的思路,构建了生态修复效果综合指数的计算方法。采用该指标体系和评估方法对2000、2005、2010、2015、2020年祁连山冰川与水源涵养功能区生态修复效果综合指数进行了估算。结果表明:近20年生态修复效果综合指数排序为ESI2010
水源涵养是评价陆地生态系统服务功能的重要指标,然而学界对水源涵养功能概念和计算方法仍存在诸多争论。这一方面说明水源涵养功能评估具有重要的现实意义,同时也说明其概念的复杂性和模糊性,亟需从生态学和水文学的基本理论出发,厘清水源涵养功能概念的内涵和评估方法,促进科学决策和有效管理。研究水源涵养功能时,生态学家更关注陆地生态系统的蓄水能力(Smax),而水文学家更关注流域的产流量(Q),两者均具有合理性,但各有侧重,若不分别辨析,极易造成概念混淆。理论和数据分析表明,蓄水能力和产流量虽然联系紧密,但概念完全不同。陆地生态系统的Smax决定了流域对降水的分配:即蒸散发(绿水)和Q(蓝水),Smax和Q在降水量一定的情况下往往存在此消彼长的关系。研究发现生态系统的根区蓄水能力(SRmax)是联系绿水和蓝水的核心要素,是水源涵养功能评估的关键变量。大尺度根区蓄水能力主要由气候决定,可借鉴工程水文中设计水库的累积曲线法,根据生态系统用水的生存策略通过气候反演。最后,本文提出3点建议:(1)在实践中分别评估生态系统的绿水和蓝水涵养功能;(2)进一步全面考虑冰川积雪、地下水等多要素的水源涵养功能;(3)...
水源涵养是评价陆地生态系统服务功能的重要指标,然而学界对水源涵养功能概念和计算方法仍存在诸多争论。这一方面说明水源涵养功能评估具有重要的现实意义,同时也说明其概念的复杂性和模糊性,亟需从生态学和水文学的基本理论出发,厘清水源涵养功能概念的内涵和评估方法,促进科学决策和有效管理。研究水源涵养功能时,生态学家更关注陆地生态系统的蓄水能力(Smax),而水文学家更关注流域的产流量(Q),两者均具有合理性,但各有侧重,若不分别辨析,极易造成概念混淆。理论和数据分析表明,蓄水能力和产流量虽然联系紧密,但概念完全不同。陆地生态系统的Smax决定了流域对降水的分配:即蒸散发(绿水)和Q(蓝水),Smax和Q在降水量一定的情况下往往存在此消彼长的关系。研究发现生态系统的根区蓄水能力(SRmax)是联系绿水和蓝水的核心要素,是水源涵养功能评估的关键变量。大尺度根区蓄水能力主要由气候决定,可借鉴工程水文中设计水库的累积曲线法,根据生态系统用水的生存策略通过气候反演。最后,本文提出3点建议:(1)在实践中分别评估生态系统的绿水和蓝水涵养功能;(2)进一步全面考虑冰川积雪、地下水等多要素的水源涵养功能;(3)...