为了获得盾构解困冻结过程中泥水仓内温度场的演变规律,以南京市江宁区新济洲供水管线过江廊道盾构解困工程为原型,依据相似理论进行了盾构内部水平冻结温度场的模型试验,研究大孔距冻结过程中泥水仓内温度场演变过程及分布特征,获得如下结论:通过盾构超前地质探孔和注浆孔布置的20根冻结管,在冻结管最大间距为3.12 m条件下,75 d时可将直径为6 480 mm的盾构泥水仓内冻实,而冻结施工至135 d后泥水仓内冻土平均温度达到-13℃,纵向温差约为4.4℃,整体冻结效果较均匀,满足盾构开仓时的封水和承载要求。冻结施工中临时停冻会导致泥水仓内冻土冷量重新分布,停冻10 h时整体冻结壁温度升高至-14~-10℃,而重新冻结20 h后冻结壁即可恢复到停冻前状态。冻结结束45 d后盾构泥水仓内冻土平均温度升高至-4℃,满足盾构复推施工要求,而冻结管位置冻土温度回升至0℃还需要约20 d,并在0℃附近维持约125d。施工中可采取强制解冻或循环泥浆等辅助措施来加快盾构泥水仓内冻土的解冻速度,洞内水平冻结方法是构建盾构仓内常压检修环境的有效地层改良手段。
为了获得盾构解困冻结过程中泥水仓内温度场的演变规律,以南京市江宁区新济洲供水管线过江廊道盾构解困工程为原型,依据相似理论进行了盾构内部水平冻结温度场的模型试验,研究大孔距冻结过程中泥水仓内温度场演变过程及分布特征,获得如下结论:通过盾构超前地质探孔和注浆孔布置的20根冻结管,在冻结管最大间距为3.12 m条件下,75 d时可将直径为6 480 mm的盾构泥水仓内冻实,而冻结施工至135 d后泥水仓内冻土平均温度达到-13℃,纵向温差约为4.4℃,整体冻结效果较均匀,满足盾构开仓时的封水和承载要求。冻结施工中临时停冻会导致泥水仓内冻土冷量重新分布,停冻10 h时整体冻结壁温度升高至-14~-10℃,而重新冻结20 h后冻结壁即可恢复到停冻前状态。冻结结束45 d后盾构泥水仓内冻土平均温度升高至-4℃,满足盾构复推施工要求,而冻结管位置冻土温度回升至0℃还需要约20 d,并在0℃附近维持约125d。施工中可采取强制解冻或循环泥浆等辅助措施来加快盾构泥水仓内冻土的解冻速度,洞内水平冻结方法是构建盾构仓内常压检修环境的有效地层改良手段。
为了获得盾构解困冻结过程中泥水仓内温度场的演变规律,以南京市江宁区新济洲供水管线过江廊道盾构解困工程为原型,依据相似理论进行了盾构内部水平冻结温度场的模型试验,研究大孔距冻结过程中泥水仓内温度场演变过程及分布特征,获得如下结论:通过盾构超前地质探孔和注浆孔布置的20根冻结管,在冻结管最大间距为3.12 m条件下,75 d时可将直径为6 480 mm的盾构泥水仓内冻实,而冻结施工至135 d后泥水仓内冻土平均温度达到-13℃,纵向温差约为4.4℃,整体冻结效果较均匀,满足盾构开仓时的封水和承载要求。冻结施工中临时停冻会导致泥水仓内冻土冷量重新分布,停冻10 h时整体冻结壁温度升高至-14~-10℃,而重新冻结20 h后冻结壁即可恢复到停冻前状态。冻结结束45 d后盾构泥水仓内冻土平均温度升高至-4℃,满足盾构复推施工要求,而冻结管位置冻土温度回升至0℃还需要约20 d,并在0℃附近维持约125d。施工中可采取强制解冻或循环泥浆等辅助措施来加快盾构泥水仓内冻土的解冻速度,洞内水平冻结方法是构建盾构仓内常压检修环境的有效地层改良手段。
为了获得盾构解困冻结过程中泥水仓内温度场的演变规律,以南京市江宁区新济洲供水管线过江廊道盾构解困工程为原型,依据相似理论进行了盾构内部水平冻结温度场的模型试验,研究大孔距冻结过程中泥水仓内温度场演变过程及分布特征,获得如下结论:通过盾构超前地质探孔和注浆孔布置的20根冻结管,在冻结管最大间距为3.12 m条件下,75 d时可将直径为6 480 mm的盾构泥水仓内冻实,而冻结施工至135 d后泥水仓内冻土平均温度达到-13℃,纵向温差约为4.4℃,整体冻结效果较均匀,满足盾构开仓时的封水和承载要求。冻结施工中临时停冻会导致泥水仓内冻土冷量重新分布,停冻10 h时整体冻结壁温度升高至-14~-10℃,而重新冻结20 h后冻结壁即可恢复到停冻前状态。冻结结束45 d后盾构泥水仓内冻土平均温度升高至-4℃,满足盾构复推施工要求,而冻结管位置冻土温度回升至0℃还需要约20 d,并在0℃附近维持约125d。施工中可采取强制解冻或循环泥浆等辅助措施来加快盾构泥水仓内冻土的解冻速度,洞内水平冻结方法是构建盾构仓内常压检修环境的有效地层改良手段。