接触面力学特性受冻融循环与流变作用存在显著的动态波动,直接影响冻土环境下桩基础长期服役性能,亟需深入研究。利用数值仿真,首先,建立考虑流变效应的冻土黏弹塑性本构模型;其次,对Kelvin模型进行改进,建立冻土–桩接触面黏弹性本构模型;进而构建综合考虑冻土、接触面流变效应的热力直接耦合模型。经室内模型试验验证后,采用该模型开展桩基础长期服役性能演变规律分析。结果表明:该接触面模型可反映应力水平对流变效应的影响。冻融循环过程中,地基升温时上部桩侧摩阻力逐渐降低(降幅39%),下部桩侧摩阻力相应增大(增幅20%);降温时反之。此外,流变效应长期作用下,上部桩侧逐渐发挥承载性能,摩阻力增大(增幅50%),深部相应降低(降幅14%),中性点在2/5桩长处。桩底压力与桩侧摩阻力存在严格的联动机制;整个桩长范围内桩侧摩阻力分布也存在上、下联动机制,某一深度处桩侧摩阻力的变化受控于整个桩体受力状态与其发展趋势。流变与冻融循环耦合作用,影响桩侧摩阻力的深度分布形态,使得桩基础承载模式动态变化,对桩基础服役性能存在显著影响。研究成果揭示了冻土地基中流变效应对桩基础长期服役性能的显著影响,将为进一步的仿真研...
接触面力学特性受冻融循环与流变作用存在显著的动态波动,直接影响冻土环境下桩基础长期服役性能,亟需深入研究。利用数值仿真,首先,建立考虑流变效应的冻土黏弹塑性本构模型;其次,对Kelvin模型进行改进,建立冻土–桩接触面黏弹性本构模型;进而构建综合考虑冻土、接触面流变效应的热力直接耦合模型。经室内模型试验验证后,采用该模型开展桩基础长期服役性能演变规律分析。结果表明:该接触面模型可反映应力水平对流变效应的影响。冻融循环过程中,地基升温时上部桩侧摩阻力逐渐降低(降幅39%),下部桩侧摩阻力相应增大(增幅20%);降温时反之。此外,流变效应长期作用下,上部桩侧逐渐发挥承载性能,摩阻力增大(增幅50%),深部相应降低(降幅14%),中性点在2/5桩长处。桩底压力与桩侧摩阻力存在严格的联动机制;整个桩长范围内桩侧摩阻力分布也存在上、下联动机制,某一深度处桩侧摩阻力的变化受控于整个桩体受力状态与其发展趋势。流变与冻融循环耦合作用,影响桩侧摩阻力的深度分布形态,使得桩基础承载模式动态变化,对桩基础服役性能存在显著影响。研究成果揭示了冻土地基中流变效应对桩基础长期服役性能的显著影响,将为进一步的仿真研...
接触面力学特性受冻融循环与流变作用存在显著的动态波动,直接影响冻土环境下桩基础长期服役性能,亟需深入研究。利用数值仿真,首先,建立考虑流变效应的冻土黏弹塑性本构模型;其次,对Kelvin模型进行改进,建立冻土–桩接触面黏弹性本构模型;进而构建综合考虑冻土、接触面流变效应的热力直接耦合模型。经室内模型试验验证后,采用该模型开展桩基础长期服役性能演变规律分析。结果表明:该接触面模型可反映应力水平对流变效应的影响。冻融循环过程中,地基升温时上部桩侧摩阻力逐渐降低(降幅39%),下部桩侧摩阻力相应增大(增幅20%);降温时反之。此外,流变效应长期作用下,上部桩侧逐渐发挥承载性能,摩阻力增大(增幅50%),深部相应降低(降幅14%),中性点在2/5桩长处。桩底压力与桩侧摩阻力存在严格的联动机制;整个桩长范围内桩侧摩阻力分布也存在上、下联动机制,某一深度处桩侧摩阻力的变化受控于整个桩体受力状态与其发展趋势。流变与冻融循环耦合作用,影响桩侧摩阻力的深度分布形态,使得桩基础承载模式动态变化,对桩基础服役性能存在显著影响。研究成果揭示了冻土地基中流变效应对桩基础长期服役性能的显著影响,将为进一步的仿真研...
接触面力学特性受冻融循环与流变作用存在显著的动态波动,直接影响冻土环境下桩基础长期服役性能,亟需深入研究。利用数值仿真,首先,建立考虑流变效应的冻土黏弹塑性本构模型;其次,对Kelvin模型进行改进,建立冻土–桩接触面黏弹性本构模型;进而构建综合考虑冻土、接触面流变效应的热力直接耦合模型。经室内模型试验验证后,采用该模型开展桩基础长期服役性能演变规律分析。结果表明:该接触面模型可反映应力水平对流变效应的影响。冻融循环过程中,地基升温时上部桩侧摩阻力逐渐降低(降幅39%),下部桩侧摩阻力相应增大(增幅20%);降温时反之。此外,流变效应长期作用下,上部桩侧逐渐发挥承载性能,摩阻力增大(增幅50%),深部相应降低(降幅14%),中性点在2/5桩长处。桩底压力与桩侧摩阻力存在严格的联动机制;整个桩长范围内桩侧摩阻力分布也存在上、下联动机制,某一深度处桩侧摩阻力的变化受控于整个桩体受力状态与其发展趋势。流变与冻融循环耦合作用,影响桩侧摩阻力的深度分布形态,使得桩基础承载模式动态变化,对桩基础服役性能存在显著影响。研究成果揭示了冻土地基中流变效应对桩基础长期服役性能的显著影响,将为进一步的仿真研...
开展水资源演变趋势分析,有助于掌握水资源动态变化进而科学配置水资源。文章以和田河为例,系统分析了近60年河川径流变化,并基于SWAT模型,对和田河未来径流趋势进行了研究。结果表明:和田河径流年际变化较小,离差系数cv为0.22,主要是由于冰川固体水库对径流的调节作用;径流年内变化表现为春旱、夏洪、秋冬枯的特点,夏季径流量约占多年平均的73.43%;不同气候情景模式下未来径流均呈现出大幅增加趋势。研究成果为指导流域管理机构科学应对未来气候变化条件下的水资源优化配置提供了技术参考。
开展水资源演变趋势分析,有助于掌握水资源动态变化进而科学配置水资源。文章以和田河为例,系统分析了近60年河川径流变化,并基于SWAT模型,对和田河未来径流趋势进行了研究。结果表明:和田河径流年际变化较小,离差系数cv为0.22,主要是由于冰川固体水库对径流的调节作用;径流年内变化表现为春旱、夏洪、秋冬枯的特点,夏季径流量约占多年平均的73.43%;不同气候情景模式下未来径流均呈现出大幅增加趋势。研究成果为指导流域管理机构科学应对未来气候变化条件下的水资源优化配置提供了技术参考。
开展水资源演变趋势分析,有助于掌握水资源动态变化进而科学配置水资源。文章以和田河为例,系统分析了近60年河川径流变化,并基于SWAT模型,对和田河未来径流趋势进行了研究。结果表明:和田河径流年际变化较小,离差系数cv为0.22,主要是由于冰川固体水库对径流的调节作用;径流年内变化表现为春旱、夏洪、秋冬枯的特点,夏季径流量约占多年平均的73.43%;不同气候情景模式下未来径流均呈现出大幅增加趋势。研究成果为指导流域管理机构科学应对未来气候变化条件下的水资源优化配置提供了技术参考。
为探明玉门市1980—2020年间径流变化及其成因,结合玉门市近40a径流、气温、降水及水面蒸发数据,分析其年际变化趋势,利用M-K、滑动t突变检验和累积距平检验确定玉门市降雨和径流突变年份,使用双累积曲线法对玉门市径流变化进行归因分析。结果表明:1980—2020年玉门市平均年径流量为0.305亿m3,年降水量为180.1mm,年均气温为7.556℃,年水面蒸发量为1123.2mm;径流和降水突变年份分别为1983和2020年;由于气温升高,导致冰川融雪和融冰为玉门市径流变化的主要影响因素,径流变化对玉门市水资源合理开发利用及生态可持续发展具有重要意义。
为探明玉门市1980—2020年间径流变化及其成因,结合玉门市近40a径流、气温、降水及水面蒸发数据,分析其年际变化趋势,利用M-K、滑动t突变检验和累积距平检验确定玉门市降雨和径流突变年份,使用双累积曲线法对玉门市径流变化进行归因分析。结果表明:1980—2020年玉门市平均年径流量为0.305亿m3,年降水量为180.1mm,年均气温为7.556℃,年水面蒸发量为1123.2mm;径流和降水突变年份分别为1983和2020年;由于气温升高,导致冰川融雪和融冰为玉门市径流变化的主要影响因素,径流变化对玉门市水资源合理开发利用及生态可持续发展具有重要意义。
对于全球气候系统而言,冰川和冰盖流动速率对气候变化的反馈至关重要。冰流蠕变是多晶冰中形成晶体优选定向(CPO)的主要原因。然而,将CPO的发展与冰流历史和冰流的演变联系起来需要正确理解多晶冰的微观结构对变形的响应。过去的研究对冰的实验室变形样品和冰芯样品的微观结构的分析,探索了冰中CPO的演化机制和影响因素。本文结合近些年来的进展,对冰中的CPO的演化机制进行了总结和凝练,并提出了未来的研究展望。