[目的]三江源是“中华水塔”和中国重要生态安全屏障。探讨三江源国家公园土壤侵蚀分布规律,为实施生态保护政策及三江源国家公园水土保持与生态文明建设提供依据。[方法]利用中国土壤流失方程(CSLE)、风力侵蚀模型和冻融侵蚀强度评价模型,采用叠加分析的方法,分析三江源国家公园土壤侵蚀状况及其在不同空间和下垫面的分布特征。[结果] 2020年公园土壤侵蚀面积2.64×10~4 km2,黄河源园区是土壤侵蚀分布最广泛的园区,而长江源园区土壤侵蚀相对严重;70%的水力侵蚀面积分布在地下冰发育带(海拔4 900 m以上),85%的风力侵蚀面积分布在地下冰发育带以下区域(海拔4 900 m以下),不同海拔高度区域土壤侵蚀及其分布差异显著;坡度5°及以下区域风力侵蚀面积比例达60%,是风力侵蚀相对集中分布区;水力侵蚀相对集中分布在8°~25°区域,水力侵蚀面积比例达75%,均是水土流失综合防治的重点区域;草地面积比例近80%,低覆盖、中低覆盖草地土壤侵蚀相对集中分布,沙地、裸土地的土壤侵蚀问题相对严重,值得重点关注。[结论]三江源国家公园水力侵蚀主要分布在海拔4 900 m以上地下...
[目的]三江源是“中华水塔”和中国重要生态安全屏障。探讨三江源国家公园土壤侵蚀分布规律,为实施生态保护政策及三江源国家公园水土保持与生态文明建设提供依据。[方法]利用中国土壤流失方程(CSLE)、风力侵蚀模型和冻融侵蚀强度评价模型,采用叠加分析的方法,分析三江源国家公园土壤侵蚀状况及其在不同空间和下垫面的分布特征。[结果] 2020年公园土壤侵蚀面积2.64×10~4 km2,黄河源园区是土壤侵蚀分布最广泛的园区,而长江源园区土壤侵蚀相对严重;70%的水力侵蚀面积分布在地下冰发育带(海拔4 900 m以上),85%的风力侵蚀面积分布在地下冰发育带以下区域(海拔4 900 m以下),不同海拔高度区域土壤侵蚀及其分布差异显著;坡度5°及以下区域风力侵蚀面积比例达60%,是风力侵蚀相对集中分布区;水力侵蚀相对集中分布在8°~25°区域,水力侵蚀面积比例达75%,均是水土流失综合防治的重点区域;草地面积比例近80%,低覆盖、中低覆盖草地土壤侵蚀相对集中分布,沙地、裸土地的土壤侵蚀问题相对严重,值得重点关注。[结论]三江源国家公园水力侵蚀主要分布在海拔4 900 m以上地下...
[目的]三江源是“中华水塔”和中国重要生态安全屏障。探讨三江源国家公园土壤侵蚀分布规律,为实施生态保护政策及三江源国家公园水土保持与生态文明建设提供依据。[方法]利用中国土壤流失方程(CSLE)、风力侵蚀模型和冻融侵蚀强度评价模型,采用叠加分析的方法,分析三江源国家公园土壤侵蚀状况及其在不同空间和下垫面的分布特征。[结果] 2020年公园土壤侵蚀面积2.64×10~4 km2,黄河源园区是土壤侵蚀分布最广泛的园区,而长江源园区土壤侵蚀相对严重;70%的水力侵蚀面积分布在地下冰发育带(海拔4 900 m以上),85%的风力侵蚀面积分布在地下冰发育带以下区域(海拔4 900 m以下),不同海拔高度区域土壤侵蚀及其分布差异显著;坡度5°及以下区域风力侵蚀面积比例达60%,是风力侵蚀相对集中分布区;水力侵蚀相对集中分布在8°~25°区域,水力侵蚀面积比例达75%,均是水土流失综合防治的重点区域;草地面积比例近80%,低覆盖、中低覆盖草地土壤侵蚀相对集中分布,沙地、裸土地的土壤侵蚀问题相对严重,值得重点关注。[结论]三江源国家公园水力侵蚀主要分布在海拔4 900 m以上地下...
全球变暖使季节性冻土范围逐渐缩小,而季节性冻土对春季径流,尤其是春季洪峰的影响使得该方面的研究更为重要。为了分析季节性冻土广泛分布的山区不同海拔高度条件下季节性冻土发育和融化期影响因子的差异,采用通径分析方法对开都河流域不同海拔高度季节性冻土最大冻结深度和解冻日数的影响因子进行了分析。结果表明,不同海拔高度这两者的影响因子差异不大,但其控制因子存在差异。季节性冻土最大冻结深度的控制因子由低海拔处的负积温和最大积雪深度转为中高海拔处的平均相对湿度;解冻日数的控制因子由低海拔处的平均风速和最大冻结深度转变为高海拔处的平均相对湿度。该差异主要由不同海拔高度的地理位置和局地气候条件等决定。