针对水冰探测过程中需要改变其物态以便于质谱分析的问题,提出了侵彻体撞击目标接触头处摩擦升温的计算方法。将侵彻体撞击冻土划分为“冻土”和“融土”阶段,高速移动热源摩擦升温法和侵彻体撞击冻土阻力法结合,提出了侵彻体撞击“冻土”阶段弹头处摩擦升温计算方法。利用仿真软件,得到了侵彻体以低于400 m/s的速度撞击时头部的升温曲线,与理论计算曲线基本一致,验证了摩擦升温函数的正确性。根据传热学理论,得到了系列速度下侵彻体撞击“冻土”阶段物态体积的改变量。
针对水冰探测过程中需要改变其物态以便于质谱分析的问题,提出了侵彻体撞击目标接触头处摩擦升温的计算方法。将侵彻体撞击冻土划分为“冻土”和“融土”阶段,高速移动热源摩擦升温法和侵彻体撞击冻土阻力法结合,提出了侵彻体撞击“冻土”阶段弹头处摩擦升温计算方法。利用仿真软件,得到了侵彻体以低于400 m/s的速度撞击时头部的升温曲线,与理论计算曲线基本一致,验证了摩擦升温函数的正确性。根据传热学理论,得到了系列速度下侵彻体撞击“冻土”阶段物态体积的改变量。
针对水冰探测过程中需要改变其物态以便于质谱分析的问题,提出了侵彻体撞击目标接触头处摩擦升温的计算方法。将侵彻体撞击冻土划分为“冻土”和“融土”阶段,高速移动热源摩擦升温法和侵彻体撞击冻土阻力法结合,提出了侵彻体撞击“冻土”阶段弹头处摩擦升温计算方法。利用仿真软件,得到了侵彻体以低于400 m/s的速度撞击时头部的升温曲线,与理论计算曲线基本一致,验证了摩擦升温函数的正确性。根据传热学理论,得到了系列速度下侵彻体撞击“冻土”阶段物态体积的改变量。
对国内外已经发射成功的和正在研制的典型月球着陆器作了详细的论述,分析了它们的结构特点。结合国内月球探测的具体情况,提出了适合月球探测的着陆器结构构想。
介绍了月球车自主天文导航原理和传统的迭代解析高度差方法,提出了一种基于月球车运动模型和UPF(Unscented粒子滤波)的自主天文导航新方法。该方法仅需利用由星敏感器和惯性测量单元测量得到的恒星的天体高度,结合月球车的运动模型,通过UPF滤波,即可获得高精度的月球车实时位置信息。计算机仿真结果表明该方法与传统方法相比,定位精度有了大幅提高,同时对几个关键的精度影响因素的仿真分析显示该方法可以有效的减弱量测噪声,星历误差等对系统性能的影响,使系统具有更高的适应能力。
针对月球车提出了一种基于天文观测的自主位置姿态确定方法.建立了利用天体敏感器测量得到的天体高度和方位作为观测信息的量测方程,并利用月球车运动的三阶常加速(CA,ConstantAceeleration)模型和姿态的欧拉角运动模型作为系统方程,给出了基于Unscented卡尔曼滤波获得月球车实时位置、速度和姿态信息的导航方法.计算机仿真表明该方法可达到较高的位置姿态确定精度.
月球探测工程是一项复杂的多学科高技术集成的系统工程。整个工程实施阶段,光学探测系统占据着重要地位。各类光学传感器和系统精确的计量和测试,对确保整个工程顺利进行有着不容忽视的作用。该文从任务需求入手,叙述了国防科工委光学计量一级站已具备的条件和存在的差距,并提出了针对月球探测工程应开展的工作和研究方向。
介绍了人类发射月球探测器进行的主要探月活动以及月球探测技术的发展和演变。分析了月球探测轨道设计与地球卫星的区别 ,给出了一些最基本的设计原则。最后 ,对探测器总体系统设计中的构型技术和各分系统的特点及其设计要求作了描述
分析了月球探测器的受力情况及其对轨道运动的影响。经简化和假设后 ,给出了探月轨道设计常用的各种力学模型和计算公式 ,并对其应用作了评述。最后介绍了奔月过程中工程上使用的 3种典型方案和各自的优缺点。