冻土渗透系数是冻土水热模型的关键参数。在当前数值计算过程中,多采用的是渗透系数经验模型,而经验模型的最大缺陷是其经验参数并不适用于所有土体。鉴于渗透系数理论模型具有较强的普适性,故考虑将渗透系数理论模型用于水热耦合计算。为评价理论模型的适用性,本文选取四组饱和冻土的渗透系数模型,以三个水热耦合模型算例为基础,通过比较渗透系数及冻胀变化趋势,对四组饱和冻土渗透系数模型的有效性进行分析。结果表明,理论模型预测结果受颗粒级配曲线及冻结特征曲线影响明显。四组理论模型均可以反映冻土渗透系数变化规律,而分形模型的预测效果最佳。推荐采用未冻水含量为变量,计算冻土渗透系数。研究成果可为准确预测冻胀提供基础。
为评价蒸发塘防渗材料——高密度聚乙烯土工膜和钠基膨润土防水毯耐久性,本文以我国北方高寒地区气候环境为试验条件,系统开展了高密度聚乙烯土工膜和钠基膨润土防水毯高浓度酸碱盐溶液和高浓度废液的腐蚀等外界特殊条件影响测试,以及钠基膨润土防水毯经过冻融循环和干湿循环条件下渗透特性变化的耐久性研究,判断材料是否满足工程要求。结果表明:高密度聚乙烯土工膜在室内4种高浓度液体中浸泡26周内,腐蚀溶液对高密度聚乙烯土工膜拉伸强度性能指标的影响较小;钠基膨润土防水毯在腐蚀溶液室内浸泡的26周内,渗透性略有增加,但对防渗性能影响不大;历经20次冻融和干湿循环后,钠基膨润土防水毯的渗透性变化较小。
冻融循环作用引起的边坡体内部水分迁移是川西地区季节冻土边坡失稳的主要原因,研究边坡土体渗透系数时间、空间变化特征是掌握水分迁移规律的重要手段.针对冻融循环作用下季节性冻土坡面渗透系数时空变化问题,选取川西新都桥地区某边坡粗颗粒土为测试土样,设计冻土渗透系数试验装置,以30%乙二醇溶液为试验渗透溶液,分别制备不同初始含水率、细颗粒含量、干密度测试土柱;添加30%乙二醇放至低恒温箱中进行12 h以上冷冻处理,开展不同冻融循环次数作用下冻土渗透系数试验,并分析其渗透系数变化规律;在此基础上结合边坡冻融期含水率现场监测数据,分析渗透系数时空变化规律.试验结果表明:初始含水量及干密度不断增加时,冻土非闭合孔隙度和渗透系数均呈减小趋势;冻土渗透系数随细颗粒含量的增加而减小,当细颗粒含量大于20%时,冻土渗透系数减小的幅度较小;冻融循环次数对冻土渗透性能起到抑制作用,当循环次数超过3次时,冻融作用对渗透性能影响不大;季节性冻土边坡1 m冻结深度以内,渗透系数随深度增加减小;11月—1月冻深范围内冻土渗透系数减小,1月—3月渗透系数开始增大.
冻土中的渗透系数对于评估冻土工程中的水,热和溶质迁移至关重要。以往研究表明,渗透系数主要依赖孔隙结构,经常被描述为孔径大小和孔隙率,但是这两个参数并不能充分地表征孔隙结构。为加强对孔隙结构的描述,引用分形理论研究了冻土中的渗透系数。基于非均匀毛细管束模型和分形理论,提出了饱和冻土中渗透系数的分形模型,并提出通过土体冻结特征曲线获取冻土中孔径分布的理论方法。为了验证分形模型的有效性,对已有实验数据进行分析。分析表明,分形渗透系数模型是毛细管分维、最大孔径、黏度和迂曲度的函数,孔径分布变化是导致冻土渗透系数变化的根本原因。通过对比,计算值与实测值吻合较好。结果表明分形模型可以较好的预测冻土中的渗透系数,研究结果可为冻土渗透机理研究提供参考。
为了寻求测试冻土水理参数的低冰点液体,以东北季节性冻土区为参考区,在探究冻结土壤水理性质中,选择出一种适合用于冻结土壤基本参数测定的低冰点液体,测定出含水率为20%的冻土渗透系数,研究冻土的水理性质,同时测定含水率为20%的非冻土渗透系数,探究冻土与非冻土水理性质的差异。研究内容以寒区低温条件为主要特色。
我国具有广大的季节冻土和多年冻土区,冻土渗透系数的测定是研究冻土区水文地质与工程地质的关键。冻土渗透系数的测定与常规测定方法不同,需要满足在渗透系数测定的条件下不融化的基本条件。基于此,本文设计了冻土渗透系数测定的实验装置,主要有三部分组成,分别为低温恒温装置、渗透仪装置、渗流装置;之后,制作了不同含水率的冻土样,并用质量分数为10%的盐溶液作为渗透液体,测量了不同含水率冻土样的渗透系数,结果表明:随着含水率的增加,冻土的渗透系数减小的越来越快。
地下冰的存在使寒区与非寒区土壤渗透系数测定存在明显差异。通过分析设计寒区非饱和冻土渗透系数试验装置,改进了原有装置的不足,容器中的溶液选用乳糖溶液在可控的温度范围内不结冰;试验装置在恒定低温条件下进行。乳糖的浓度应同土壤中的水有相同的热力学平衡。测定装置使水流流量与水力梯度成线性变化。