共检索到 13

近年来,随着西藏地区高速发展,与日俱增的货运量对西藏地区高寒高海拔的道路提出了新的挑战。为了探究纳米高岭土在高寒高海拔的环境下对于道路温敏性的作用,制备了5种不同掺量的纳米高岭土改性沥青试样,主要就纳米高岭土对改性沥青的温度敏感性的影响进行了研究,通过恒温加热台加热实验与炒酸奶机恒温冷却实验分别测试基质沥青与改性沥青在高温与低温下的热传导性能。实验结果表明,纳米高岭土改性沥青混合料的导热性能比基质沥青有一定程度的降低,由初步概率分析可得纳米高岭土掺量为7%时纳米高岭土改性沥青的温敏性最小。

期刊论文 2022-07-28 DOI: 10.19335/j.cnki.2095-6649.2022.5.044

近年来,随着西藏地区高速发展,与日俱增的货运量对西藏地区高寒高海拔的道路提出了新的挑战。为了探究纳米高岭土在高寒高海拔的环境下对于道路温敏性的作用,制备了5种不同掺量的纳米高岭土改性沥青试样,主要就纳米高岭土对改性沥青的温度敏感性的影响进行了研究,通过恒温加热台加热实验与炒酸奶机恒温冷却实验分别测试基质沥青与改性沥青在高温与低温下的热传导性能。实验结果表明,纳米高岭土改性沥青混合料的导热性能比基质沥青有一定程度的降低,由初步概率分析可得纳米高岭土掺量为7%时纳米高岭土改性沥青的温敏性最小。

期刊论文 2022-07-28 DOI: 10.19335/j.cnki.2095-6649.2022.5.044

近年来,随着西藏地区高速发展,与日俱增的货运量对西藏地区高寒高海拔的道路提出了新的挑战。为了探究纳米高岭土在高寒高海拔的环境下对于道路温敏性的作用,制备了5种不同掺量的纳米高岭土改性沥青试样,主要就纳米高岭土对改性沥青的温度敏感性的影响进行了研究,通过恒温加热台加热实验与炒酸奶机恒温冷却实验分别测试基质沥青与改性沥青在高温与低温下的热传导性能。实验结果表明,纳米高岭土改性沥青混合料的导热性能比基质沥青有一定程度的降低,由初步概率分析可得纳米高岭土掺量为7%时纳米高岭土改性沥青的温敏性最小。

期刊论文 2022-07-28 DOI: 10.19335/j.cnki.2095-6649.2022.5.044

多年冻土区土壤碳库对水热变化的响应是气候预测中的主要不确定性因素。国内外关于浅层土壤(0—30 cm)有机碳储量及潜在排放量的研究已取得一系列突破成果,然而深层土壤对气候变暖作何响应仍需进一步探讨。利用钻孔技术采集大兴安岭北部多年冻土区0—6 m (含活动层和多年冻土层)土壤样品,探究土壤碳、氮、磷等理化指标的剖面分布特征,设置三种温度(5、10和15℃)及水分(30%、45%和60%)梯度的室内培养实验,明确多年冻土区不同深度土壤有机碳矿化对气候变化的响应特征。结果表明,土壤pH、总有机碳、溶解性有机碳、总氮、硝态氮、铵态氮含量均与土壤深度呈显著正相关,多年冻土层中的平均储量高于活动层。培养60天后,各深度土壤有机碳累积矿化量的变化范围为0.20—4.86 mg C。整体来看,土壤有机碳累积矿化量随温度的升高而增加,但其对水分变化的响应较为复杂,表现出先减小(幅度较大)后增大(幅度较小)的趋势。分析不同深度土壤有机碳累积矿化量,发现多年冻土层平均值显著高于活动层。三因素方差分析结果表明,温度、水分和深度及交互作用对累积矿化量影响显著(P<0.001)。活动层Q10

期刊论文 2021-06-11

多年冻土区土壤碳库对水热变化的响应是气候预测中的主要不确定性因素。国内外关于浅层土壤(0—30 cm)有机碳储量及潜在排放量的研究已取得一系列突破成果,然而深层土壤对气候变暖作何响应仍需进一步探讨。利用钻孔技术采集大兴安岭北部多年冻土区0—6 m (含活动层和多年冻土层)土壤样品,探究土壤碳、氮、磷等理化指标的剖面分布特征,设置三种温度(5、10和15℃)及水分(30%、45%和60%)梯度的室内培养实验,明确多年冻土区不同深度土壤有机碳矿化对气候变化的响应特征。结果表明,土壤pH、总有机碳、溶解性有机碳、总氮、硝态氮、铵态氮含量均与土壤深度呈显著正相关,多年冻土层中的平均储量高于活动层。培养60天后,各深度土壤有机碳累积矿化量的变化范围为0.20—4.86 mg C。整体来看,土壤有机碳累积矿化量随温度的升高而增加,但其对水分变化的响应较为复杂,表现出先减小(幅度较大)后增大(幅度较小)的趋势。分析不同深度土壤有机碳累积矿化量,发现多年冻土层平均值显著高于活动层。三因素方差分析结果表明,温度、水分和深度及交互作用对累积矿化量影响显著(P<0.001)。活动层Q10

期刊论文 2021-06-11

多年冻土区土壤碳库对水热变化的响应是气候预测中的主要不确定性因素。国内外关于浅层土壤(0—30 cm)有机碳储量及潜在排放量的研究已取得一系列突破成果,然而深层土壤对气候变暖作何响应仍需进一步探讨。利用钻孔技术采集大兴安岭北部多年冻土区0—6 m (含活动层和多年冻土层)土壤样品,探究土壤碳、氮、磷等理化指标的剖面分布特征,设置三种温度(5、10和15℃)及水分(30%、45%和60%)梯度的室内培养实验,明确多年冻土区不同深度土壤有机碳矿化对气候变化的响应特征。结果表明,土壤pH、总有机碳、溶解性有机碳、总氮、硝态氮、铵态氮含量均与土壤深度呈显著正相关,多年冻土层中的平均储量高于活动层。培养60天后,各深度土壤有机碳累积矿化量的变化范围为0.20—4.86 mg C。整体来看,土壤有机碳累积矿化量随温度的升高而增加,但其对水分变化的响应较为复杂,表现出先减小(幅度较大)后增大(幅度较小)的趋势。分析不同深度土壤有机碳累积矿化量,发现多年冻土层平均值显著高于活动层。三因素方差分析结果表明,温度、水分和深度及交互作用对累积矿化量影响显著(P<0.001)。活动层Q10

期刊论文 2021-06-11

研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...

期刊论文 2019-01-25

研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...

期刊论文 2019-01-25

研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...

期刊论文 2019-01-25

研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...

期刊论文 2019-01-25
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页