[目的]分析不同区域冰川河流的水沙关系、输沙量及其对气候变化的响应,并对泥沙侵蚀强度进行评估,为高寒山区冰川河流的水沙动态研究提供理论基础。[方法]选取绒布河和科其喀尔河作为研究对象,在消融期间(2018年5—10月)对冰川河进行野外观测和水样采集。考虑气温和降水的影响,采用水文模型法对绒布河径流量进行模拟,结合水沙关系曲线、泥沙滞后环及回归模型对冰川河流的悬移泥沙输移及其影响因素进行分析。[结果]气温是影响高寒山区冰川河流悬移泥沙运输的主要因素;绒布河和科其喀尔河消融期的径流模数约7.36×10~5,6.82×10~5 m3/(km2·a),输沙模数分别为200 t/(km2·a)和890 t/(km2·a)。[结论]绒布冰川对气候变化更加敏感,消融强度大,泥沙主要来源于融水与降水对河道底部与坡面的侵蚀,但是可侵蚀沉积物和水力条件不足,造成该地区输沙模数低于其他冰川;科其喀尔河地处西北干旱区,泥沙输移量主要是由泥沙来源决定的,随着气温的升高,大量冰碛物被输送到下游,侵蚀强度明显高于其他大多数冰川。
采用低场核磁共振技术测试了冻融循环过程中不同土质、不同Na Cl离子浓度饱和试样的未冻水含量,结合T2分布曲线从微细观角度分析了冻融过程中未冻水在孔隙赋存分布情况。试验结果表明:冻结过程可分为过冷度段、快速下降段、稳定段3个阶段,而融化过程仅存在稳定段、快速融化段,并不存在与过冷现象对应的过热现象。冻结时大孔隙的水首先冻结,而融化时孔隙水的增加却是从小孔隙开始的,这是由水分热动力学势能的差异导致孔隙水冻结和融化在时间上的有序性。并且分析了冻融循环中土质类型、离子浓度对未冻水含量的影响,以及探讨了冻融过程出现的滞后现象的原因。
本文以大量实测资料为基础,探讨了季节融化层导温性能及地温峰值滞后等自然因素对多年冻土上限深度的影响。还通过地表面的热效应和气温脉动的研究,讨论了多年冻土上限深度的小区域特点和未来期望值。提出了适合青藏高原多年冻土区计算多年冻土上限深度的半经验公式。由于主要依据是地温的分布和传导特征,故称之为“地温法”。