基于地源热泵的分布式供热系统是一种寒区铁路路基冻胀病害整治新方法。不同波长与变形量的路基冻胀会引起轨道结构产生不同的变形破坏模式和不平顺类型。为防止主动供热作用下路基不均匀温度场与残余冻胀变形引起轨道次生高低和水平不平顺,提出路基分布式供热系统的设计要素及建议值。建立单线铁路路基的足尺模型试验平台,制作与安装实体地源热泵系统,测试其在冬季的供热性能与热扩散规律。结合数值模拟手段,以供热管横向倾角(0°~10°)和纵向间距(1.0~4.0 m)这2个要素为变量,共计77个工况,分析供热管在路基内部的三维传热特性。基于路基不同部位冻结深度及其差异值等指标的变化规律,对供热管的布置方案进行优化。结果表明:热泵供热管在最冷日的平均温度为28.6℃,起到有效的热源功能。供热管倾斜布置有利于消除横断面上的冻结深度差异。案例路基横向冻结深度差异值随着供热管横向倾角呈先减小、后增大的规律,变化幅度为0.87 cm/1°;路基纵向冻结深度差异值随着供热管纵向间距呈逐渐增大的规律,变化幅度为1.2~3.2 cm/0.5 m。路基残余不均匀冻胀引起高低不平顺的可能性高于水平不平顺,且对供热管纵向间距的敏感性...
基于地源热泵的分布式供热系统是一种寒区铁路路基冻胀病害整治新方法。不同波长与变形量的路基冻胀会引起轨道结构产生不同的变形破坏模式和不平顺类型。为防止主动供热作用下路基不均匀温度场与残余冻胀变形引起轨道次生高低和水平不平顺,提出路基分布式供热系统的设计要素及建议值。建立单线铁路路基的足尺模型试验平台,制作与安装实体地源热泵系统,测试其在冬季的供热性能与热扩散规律。结合数值模拟手段,以供热管横向倾角(0°~10°)和纵向间距(1.0~4.0 m)这2个要素为变量,共计77个工况,分析供热管在路基内部的三维传热特性。基于路基不同部位冻结深度及其差异值等指标的变化规律,对供热管的布置方案进行优化。结果表明:热泵供热管在最冷日的平均温度为28.6℃,起到有效的热源功能。供热管倾斜布置有利于消除横断面上的冻结深度差异。案例路基横向冻结深度差异值随着供热管横向倾角呈先减小、后增大的规律,变化幅度为0.87 cm/1°;路基纵向冻结深度差异值随着供热管纵向间距呈逐渐增大的规律,变化幅度为1.2~3.2 cm/0.5 m。路基残余不均匀冻胀引起高低不平顺的可能性高于水平不平顺,且对供热管纵向间距的敏感性...
为了保证高寒地区分散居民埋地供水管道不冻结,防止周围冻土因管道散热而融化,造成埋地管道下沉损坏,使用U型管作为伴热管,考察其防冻保温效果。通过数值分析方法研究了U型伴热管对输水管和冻土层温度的影响。结果表明,U型伴热管伴热保温效果良好,在所研究的参数范围内,U型伴热管的进出口温差最大约为8℃,最小约为1℃。以管道长度为50 m和120 m的数值模拟数据为基础,通过U型伴热管去程和回程温差,预测U型伴热管出口处温度降到冰点以下时对应的输水管道长度分别为587 m和638 m。最后拟合得到了冻土层的最高温度关联式,通过此关联式可以获得不同的U型伴热管进口温度和进口流速的极限值,从而保证冻土层不被融化。
为了保证高寒地区分散居民埋地供水管道不冻结,防止周围冻土因管道散热而融化,造成埋地管道下沉损坏,使用U型管作为伴热管,考察其防冻保温效果。通过数值分析方法研究了U型伴热管对输水管和冻土层温度的影响。结果表明,U型伴热管伴热保温效果良好,在所研究的参数范围内,U型伴热管的进出口温差最大约为8℃,最小约为1℃。以管道长度为50 m和120 m的数值模拟数据为基础,通过U型伴热管去程和回程温差,预测U型伴热管出口处温度降到冰点以下时对应的输水管道长度分别为587 m和638 m。最后拟合得到了冻土层的最高温度关联式,通过此关联式可以获得不同的U型伴热管进口温度和进口流速的极限值,从而保证冻土层不被融化。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
针对多年冻土区机场跑道特点及飞行区的特殊要求,提出斜插L型热管+保温板温控技术方案。首先,对工业纯铝、Q235碳素钢及304不锈钢3种不同材质热管的降温效果进行了实验对比,实验结果表明:工业纯铝热管的降温效果最佳。其次,采用纯铝材质L型热管针对蒸发段坡角、热管弯折角、保温板厚度及保温板埋深对道基温控的影响程度进行了实验分析,实验结果表明:在10°~45°范围内,蒸发段坡角越大,降温效果越好,在梯度比定量指标下,蒸发段坡角取25°可同时满足降温效果和经济性最优化;热管弯折角对降温幅度影响较小,同一埋深下,温差范围在0.1℃~0.3℃,弯折角取120°;2 cm厚度保温板的土层回温率最大,3 cm和5 cm厚度保温板的土层回温率较为接近,8 cm厚度保温板土层回温率最小,综合考虑保温效果和经济性,取3 cm厚度的保温板;保温板距上覆碎石层10、20、30 cm不同埋深下,10 cm埋深的土层回温率较20 cm和30 cm埋深的土层回温率分别高0.02%~0.71%和0.65%~1.71%,20 cm埋深的土层回温率较30 cm埋深的土层回温率高0.62%~1.62%,30 cm埋深的保温效...