共检索到 4

为研究聚酚醛、聚氨酯、聚苯乙烯3种寒区隧道有机保温材料的劣化特性,通过室内试验分析自然浸水-冻融条件下材料物理力学性能和微观结构的变化,并基于参数变化对比劣化速率。研究结果表明:1)各保温材料吸水时均经历快速—平缓—稳定3个阶段。聚酚醛吸水时间最长,为192 h; 50次冻融循环后,聚苯乙烯质量吸水率最高,为67.50%。2)各材料导热系数与冻融循环次数、质量吸水/含冰率的关系采用二元线性模型预测,冻结状态的聚苯乙烯及融化状态的聚氨酯受冻融循环影响最大。3)未冻融时,聚苯乙烯导热系数最低,为0.029 1 W/(m·K);但在50次冻融循环之后,融化状态的聚苯乙烯和冻结状态的聚酚醛导热系数最低,分别为0.034 4、0.047 3 W/(m·K)。4)聚氨酯压缩强度远大于其他材料,最高为0.476 MPa。材料隔热性能的劣化主要受微观气泡形态、孔径大小、气孔开裂等因素的影响。

期刊论文 2022-09-14

为研究聚酚醛、聚氨酯、聚苯乙烯3种寒区隧道有机保温材料的劣化特性,通过室内试验分析自然浸水-冻融条件下材料物理力学性能和微观结构的变化,并基于参数变化对比劣化速率。研究结果表明:1)各保温材料吸水时均经历快速—平缓—稳定3个阶段。聚酚醛吸水时间最长,为192 h; 50次冻融循环后,聚苯乙烯质量吸水率最高,为67.50%。2)各材料导热系数与冻融循环次数、质量吸水/含冰率的关系采用二元线性模型预测,冻结状态的聚苯乙烯及融化状态的聚氨酯受冻融循环影响最大。3)未冻融时,聚苯乙烯导热系数最低,为0.029 1 W/(m·K);但在50次冻融循环之后,融化状态的聚苯乙烯和冻结状态的聚酚醛导热系数最低,分别为0.034 4、0.047 3 W/(m·K)。4)聚氨酯压缩强度远大于其他材料,最高为0.476 MPa。材料隔热性能的劣化主要受微观气泡形态、孔径大小、气孔开裂等因素的影响。

期刊论文 2022-09-14

为研究聚酚醛、聚氨酯、聚苯乙烯3种寒区隧道有机保温材料的劣化特性,通过室内试验分析自然浸水-冻融条件下材料物理力学性能和微观结构的变化,并基于参数变化对比劣化速率。研究结果表明:1)各保温材料吸水时均经历快速—平缓—稳定3个阶段。聚酚醛吸水时间最长,为192 h; 50次冻融循环后,聚苯乙烯质量吸水率最高,为67.50%。2)各材料导热系数与冻融循环次数、质量吸水/含冰率的关系采用二元线性模型预测,冻结状态的聚苯乙烯及融化状态的聚氨酯受冻融循环影响最大。3)未冻融时,聚苯乙烯导热系数最低,为0.029 1 W/(m·K);但在50次冻融循环之后,融化状态的聚苯乙烯和冻结状态的聚酚醛导热系数最低,分别为0.034 4、0.047 3 W/(m·K)。4)聚氨酯压缩强度远大于其他材料,最高为0.476 MPa。材料隔热性能的劣化主要受微观气泡形态、孔径大小、气孔开裂等因素的影响。

期刊论文 2022-09-14

对祁东矿井人工冻土力学性能试验研究结果表明:祁东冻土冻结温度低、冻土强度小、膨胀性大、冻土在24 h 内应力松弛很快;三轴剪切试验中发现,在1~10 MPa 围压条件下,冻土强度与围压几乎无关。试验结果被工程实践所证实,可为宿东矿区其它矿井建设提供依据。

期刊论文
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页