共检索到 19

利用近10 a G6京藏高速沿线自动气象站与交通气象站逐时观测资料,分析G6呼和浩特—卓资县—集宁区段(简称G6呼集段)道路结冰的时空特征及影响因子的变化规律。结果表明:10—次年4月为G6呼集段道路结冰易发期,通过分析“冰点”温度变化,G6呼集段呼和浩特至集宁方向路面温度(简称路温)和气温呈先陡降再缓升的U型特征,卓资段为U型底部,呼市至卓资、集宁段结冰日数呈现“少、多、少”分布,卓资段最先达到结冰气象条件。降雪、积雪是引发该路段道路结冰的主要诱因,年均40次,占比89%,降雪结冰主要发生于11至次年3月,傍晚至凌晨为结冰高发时段,结冰过程持续5~30 h;积雪结冰的特点是时间短,冰面浅薄。降水和高湿引起的道路结冰年均不到5 d,占比11%,主要发生于秋冬、冬春交替夜晚。日最低气温主要集中于06—07时,白天路温高于气温,两者变化趋势一致,其温差从日出至日落呈先增后减,夜晚气温略高于路温,温差稳定。通过路温和气温的变化关系总结出不同区段、时期的温差公式,利用高分辨率气温数据实现路温精准监测,达到及时预警的目的。

期刊论文 2025-06-18

利用近10 a G6京藏高速沿线自动气象站与交通气象站逐时观测资料,分析G6呼和浩特—卓资县—集宁区段(简称G6呼集段)道路结冰的时空特征及影响因子的变化规律。结果表明:10—次年4月为G6呼集段道路结冰易发期,通过分析“冰点”温度变化,G6呼集段呼和浩特至集宁方向路面温度(简称路温)和气温呈先陡降再缓升的U型特征,卓资段为U型底部,呼市至卓资、集宁段结冰日数呈现“少、多、少”分布,卓资段最先达到结冰气象条件。降雪、积雪是引发该路段道路结冰的主要诱因,年均40次,占比89%,降雪结冰主要发生于11至次年3月,傍晚至凌晨为结冰高发时段,结冰过程持续5~30 h;积雪结冰的特点是时间短,冰面浅薄。降水和高湿引起的道路结冰年均不到5 d,占比11%,主要发生于秋冬、冬春交替夜晚。日最低气温主要集中于06—07时,白天路温高于气温,两者变化趋势一致,其温差从日出至日落呈先增后减,夜晚气温略高于路温,温差稳定。通过路温和气温的变化关系总结出不同区段、时期的温差公式,利用高分辨率气温数据实现路温精准监测,达到及时预警的目的。

期刊论文 2025-06-18

利用近10 a G6京藏高速沿线自动气象站与交通气象站逐时观测资料,分析G6呼和浩特—卓资县—集宁区段(简称G6呼集段)道路结冰的时空特征及影响因子的变化规律。结果表明:10—次年4月为G6呼集段道路结冰易发期,通过分析“冰点”温度变化,G6呼集段呼和浩特至集宁方向路面温度(简称路温)和气温呈先陡降再缓升的U型特征,卓资段为U型底部,呼市至卓资、集宁段结冰日数呈现“少、多、少”分布,卓资段最先达到结冰气象条件。降雪、积雪是引发该路段道路结冰的主要诱因,年均40次,占比89%,降雪结冰主要发生于11至次年3月,傍晚至凌晨为结冰高发时段,结冰过程持续5~30 h;积雪结冰的特点是时间短,冰面浅薄。降水和高湿引起的道路结冰年均不到5 d,占比11%,主要发生于秋冬、冬春交替夜晚。日最低气温主要集中于06—07时,白天路温高于气温,两者变化趋势一致,其温差从日出至日落呈先增后减,夜晚气温略高于路温,温差稳定。通过路温和气温的变化关系总结出不同区段、时期的温差公式,利用高分辨率气温数据实现路温精准监测,达到及时预警的目的。

期刊论文 2025-06-18

利用近10 a G6京藏高速沿线自动气象站与交通气象站逐时观测资料,分析G6呼和浩特—卓资县—集宁区段(简称G6呼集段)道路结冰的时空特征及影响因子的变化规律。结果表明:10—次年4月为G6呼集段道路结冰易发期,通过分析“冰点”温度变化,G6呼集段呼和浩特至集宁方向路面温度(简称路温)和气温呈先陡降再缓升的U型特征,卓资段为U型底部,呼市至卓资、集宁段结冰日数呈现“少、多、少”分布,卓资段最先达到结冰气象条件。降雪、积雪是引发该路段道路结冰的主要诱因,年均40次,占比89%,降雪结冰主要发生于11至次年3月,傍晚至凌晨为结冰高发时段,结冰过程持续5~30 h;积雪结冰的特点是时间短,冰面浅薄。降水和高湿引起的道路结冰年均不到5 d,占比11%,主要发生于秋冬、冬春交替夜晚。日最低气温主要集中于06—07时,白天路温高于气温,两者变化趋势一致,其温差从日出至日落呈先增后减,夜晚气温略高于路温,温差稳定。通过路温和气温的变化关系总结出不同区段、时期的温差公式,利用高分辨率气温数据实现路温精准监测,达到及时预警的目的。

期刊论文 2025-06-18

利用近10 a G6京藏高速沿线自动气象站与交通气象站逐时观测资料,分析G6呼和浩特—卓资县—集宁区段(简称G6呼集段)道路结冰的时空特征及影响因子的变化规律。结果表明:10—次年4月为G6呼集段道路结冰易发期,通过分析“冰点”温度变化,G6呼集段呼和浩特至集宁方向路面温度(简称路温)和气温呈先陡降再缓升的U型特征,卓资段为U型底部,呼市至卓资、集宁段结冰日数呈现“少、多、少”分布,卓资段最先达到结冰气象条件。降雪、积雪是引发该路段道路结冰的主要诱因,年均40次,占比89%,降雪结冰主要发生于11至次年3月,傍晚至凌晨为结冰高发时段,结冰过程持续5~30 h;积雪结冰的特点是时间短,冰面浅薄。降水和高湿引起的道路结冰年均不到5 d,占比11%,主要发生于秋冬、冬春交替夜晚。日最低气温主要集中于06—07时,白天路温高于气温,两者变化趋势一致,其温差从日出至日落呈先增后减,夜晚气温略高于路温,温差稳定。通过路温和气温的变化关系总结出不同区段、时期的温差公式,利用高分辨率气温数据实现路温精准监测,达到及时预警的目的。

期刊论文 2025-06-18

选取1961—2020年三江源地区19个气象观测站点的逐日冻土数据,整理出冻结初始日、融化终止日、最大冻结深度,研究三江源季节性冻土始冻期、解冻期、年最大冻结深度的时空分布特征。结果显示:1961—2020年三江源季节性冻土区平均冻结初始日为10月12日,气候倾向率为2.15 d/10 a,呈现明显推迟趋势;1961—2020年平均融化终止日为5月5日,气候倾向率为-1.35 d/10 a,总体呈较显著提前趋势;平均年最大冻结深度为132.7 cm,气候倾向率为-1.50 cm/10 a,冻结深度总体呈显著减小趋势。

期刊论文 2024-12-23

选取1961—2020年三江源地区19个气象观测站点的逐日冻土数据,整理出冻结初始日、融化终止日、最大冻结深度,研究三江源季节性冻土始冻期、解冻期、年最大冻结深度的时空分布特征。结果显示:1961—2020年三江源季节性冻土区平均冻结初始日为10月12日,气候倾向率为2.15 d/10 a,呈现明显推迟趋势;1961—2020年平均融化终止日为5月5日,气候倾向率为-1.35 d/10 a,总体呈较显著提前趋势;平均年最大冻结深度为132.7 cm,气候倾向率为-1.50 cm/10 a,冻结深度总体呈显著减小趋势。

期刊论文 2024-12-23

选取1961—2020年三江源地区19个气象观测站点的逐日冻土数据,整理出冻结初始日、融化终止日、最大冻结深度,研究三江源季节性冻土始冻期、解冻期、年最大冻结深度的时空分布特征。结果显示:1961—2020年三江源季节性冻土区平均冻结初始日为10月12日,气候倾向率为2.15 d/10 a,呈现明显推迟趋势;1961—2020年平均融化终止日为5月5日,气候倾向率为-1.35 d/10 a,总体呈较显著提前趋势;平均年最大冻结深度为132.7 cm,气候倾向率为-1.50 cm/10 a,冻结深度总体呈显著减小趋势。

期刊论文 2024-12-23

选取1961—2020年三江源地区19个气象观测站点的逐日冻土数据,整理出冻结初始日、融化终止日、最大冻结深度,研究三江源季节性冻土始冻期、解冻期、年最大冻结深度的时空分布特征。结果显示:1961—2020年三江源季节性冻土区平均冻结初始日为10月12日,气候倾向率为2.15 d/10 a,呈现明显推迟趋势;1961—2020年平均融化终止日为5月5日,气候倾向率为-1.35 d/10 a,总体呈较显著提前趋势;平均年最大冻结深度为132.7 cm,气候倾向率为-1.50 cm/10 a,冻结深度总体呈显著减小趋势。

期刊论文 2024-12-23

利用博斯腾湖流域开都河、黄水沟和清水河的出山口水文站月径流量和气象站月平均数据,开展气候水文变化特征分析和径流变化对气候因子的响应研究。结果表明,博斯腾湖流域年际气候变化以气温上升为主,降水量增加趋势不显著;域内主要河流径流量持续上升。突变检验发现,三条入湖河流20世纪90年代之前径流量增加主要是域内降水量增加的结果,随后受气温上升导致冰雪消融加快也对径流量的增加有贡献。相关分析结果显示,博斯腾湖三条入湖河流年径流量变化主要受4、7月降水因子影响。此外,开都河的径流变化还表现出对8月气温和降水的显著响应,同时开都河流域集水区冰川的面积和占比均大于黄水沟和清水河流域,这表明冰川融水补给对开都河径流的影响大于黄水沟和清水河。所建立的气候因子—径流量多元线性回归模型,能够很好地模拟开都河、黄水沟和清水河的径流变化过程,证明了博斯腾湖流域水文变化受气候因子的显著影响。

期刊论文 2022-03-03
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共19条,2页