为探究微型水泥钢管桩在多年冻土地区的适应性,以某输油管道阀室建筑项目为依托,通过现场试验和数值模拟研究桩基的承载模式及桩周土的回冻规律。研究表明,桩基荷载沉降曲线变形较缓,承载模式表现出摩擦桩特性,且承载力满足设计要求;水泥入模温度5℃,施工完成后桩周土体融化圈在第5 d时达到峰值,第36 d完全消失,桩周土体重新回冻;桩基水化热影响最大半径因位置差异而存在不同,桩周土体初始温度最高的位置影响半径最大,约为2.9倍桩径;与大直径桩基相比,微型水泥钢管桩的回冻时间和影响半径分别约为大直径桩基的1/4和1/3。研究结果表明,在多年冻土地区微型水泥钢管桩具有较好的适应性。
为探究微型水泥钢管桩在多年冻土地区的适应性,以某输油管道阀室建筑项目为依托,通过现场试验和数值模拟研究桩基的承载模式及桩周土的回冻规律。研究表明,桩基荷载沉降曲线变形较缓,承载模式表现出摩擦桩特性,且承载力满足设计要求;水泥入模温度5℃,施工完成后桩周土体融化圈在第5 d时达到峰值,第36 d完全消失,桩周土体重新回冻;桩基水化热影响最大半径因位置差异而存在不同,桩周土体初始温度最高的位置影响半径最大,约为2.9倍桩径;与大直径桩基相比,微型水泥钢管桩的回冻时间和影响半径分别约为大直径桩基的1/4和1/3。研究结果表明,在多年冻土地区微型水泥钢管桩具有较好的适应性。
为探究微型水泥钢管桩在多年冻土地区的适应性,以某输油管道阀室建筑项目为依托,通过现场试验和数值模拟研究桩基的承载模式及桩周土的回冻规律。研究表明,桩基荷载沉降曲线变形较缓,承载模式表现出摩擦桩特性,且承载力满足设计要求;水泥入模温度5℃,施工完成后桩周土体融化圈在第5 d时达到峰值,第36 d完全消失,桩周土体重新回冻;桩基水化热影响最大半径因位置差异而存在不同,桩周土体初始温度最高的位置影响半径最大,约为2.9倍桩径;与大直径桩基相比,微型水泥钢管桩的回冻时间和影响半径分别约为大直径桩基的1/4和1/3。研究结果表明,在多年冻土地区微型水泥钢管桩具有较好的适应性。
为探究微型水泥钢管桩在多年冻土地区的适应性,以某输油管道阀室建筑项目为依托,通过现场试验和数值模拟研究桩基的承载模式及桩周土的回冻规律。研究表明,桩基荷载沉降曲线变形较缓,承载模式表现出摩擦桩特性,且承载力满足设计要求;水泥入模温度5℃,施工完成后桩周土体融化圈在第5 d时达到峰值,第36 d完全消失,桩周土体重新回冻;桩基水化热影响最大半径因位置差异而存在不同,桩周土体初始温度最高的位置影响半径最大,约为2.9倍桩径;与大直径桩基相比,微型水泥钢管桩的回冻时间和影响半径分别约为大直径桩基的1/4和1/3。研究结果表明,在多年冻土地区微型水泥钢管桩具有较好的适应性。
为探究微型水泥钢管桩在多年冻土地区的适应性,以某输油管道阀室建筑项目为依托,通过现场试验和数值模拟研究桩基的承载模式及桩周土的回冻规律。研究表明,桩基荷载沉降曲线变形较缓,承载模式表现出摩擦桩特性,且承载力满足设计要求;水泥入模温度5℃,施工完成后桩周土体融化圈在第5 d时达到峰值,第36 d完全消失,桩周土体重新回冻;桩基水化热影响最大半径因位置差异而存在不同,桩周土体初始温度最高的位置影响半径最大,约为2.9倍桩径;与大直径桩基相比,微型水泥钢管桩的回冻时间和影响半径分别约为大直径桩基的1/4和1/3。研究结果表明,在多年冻土地区微型水泥钢管桩具有较好的适应性。
为探究微型水泥钢管桩在多年冻土地区的适应性,以某输油管道阀室建筑项目为依托,通过现场试验和数值模拟研究桩基的承载模式及桩周土的回冻规律。研究表明,桩基荷载沉降曲线变形较缓,承载模式表现出摩擦桩特性,且承载力满足设计要求;水泥入模温度5℃,施工完成后桩周土体融化圈在第5 d时达到峰值,第36 d完全消失,桩周土体重新回冻;桩基水化热影响最大半径因位置差异而存在不同,桩周土体初始温度最高的位置影响半径最大,约为2.9倍桩径;与大直径桩基相比,微型水泥钢管桩的回冻时间和影响半径分别约为大直径桩基的1/4和1/3。研究结果表明,在多年冻土地区微型水泥钢管桩具有较好的适应性。
在季节性冻土区的光伏发电项目建设过程中,冻土的冻胀融陷作用常严重弱化光伏支架桩基础的承载力。依托某拟建于季节性冻土区的光伏电站,通过现场试桩试验,分析了单根钢桩竖向抗拔静载试验、水平静载的试验结果,系统分析了不同桩型、桩深的承载特性,并判断是否符合设计标准;提出“引孔+回填”施工工艺,研究其对钢桩基础抗拔承载力的提升效果。试验结果表明:引孔后回填砂和水泥至孔深90%的施工工艺对光伏支架桩基础的极限抗拔承载力提升效果最优。以期试验结果为类似光伏支架桩基础工程提供参考和借鉴。
在季节性冻土区的光伏发电项目建设过程中,冻土的冻胀融陷作用常严重弱化光伏支架桩基础的承载力。依托某拟建于季节性冻土区的光伏电站,通过现场试桩试验,分析了单根钢桩竖向抗拔静载试验、水平静载的试验结果,系统分析了不同桩型、桩深的承载特性,并判断是否符合设计标准;提出“引孔+回填”施工工艺,研究其对钢桩基础抗拔承载力的提升效果。试验结果表明:引孔后回填砂和水泥至孔深90%的施工工艺对光伏支架桩基础的极限抗拔承载力提升效果最优。以期试验结果为类似光伏支架桩基础工程提供参考和借鉴。
新型管幕冻结法冻结系统由充填混凝土的实顶管内布置圆形主力冻结管和限位管、未充填混凝土的空顶管内布置异形加强冻结管组成。为分析该新型管幕冻结系统中空顶管周围的冻结效果,通过拱北隧道管幕冻结现场原型试验,对空顶管中异形加强冻结管是否采取外表面保温措施展开研究,利用冻土帷幕厚度的变化对异形加强冻结管保温措施与不保温状态进行冻结效果对比分析。结果表明:异形加强冻结管保温不利于冻土帷幕的形成,随着冻结时间推移,冻土帷幕的发展会越来越慢;协同冻结模式下60 d后保温与不保温的冻土厚度之差约为冻结20 d的2倍。可以把空顶管作为“大冻结管”来考虑,利用异形加强冻结管对空顶管内部整体降温,更有利于顶管周围冻土帷幕的发展。
新型管幕冻结法冻结系统由充填混凝土的实顶管内布置圆形主力冻结管和限位管、未充填混凝土的空顶管内布置异形加强冻结管组成。为分析该新型管幕冻结系统中空顶管周围的冻结效果,通过拱北隧道管幕冻结现场原型试验,对空顶管中异形加强冻结管是否采取外表面保温措施展开研究,利用冻土帷幕厚度的变化对异形加强冻结管保温措施与不保温状态进行冻结效果对比分析。结果表明:异形加强冻结管保温不利于冻土帷幕的形成,随着冻结时间推移,冻土帷幕的发展会越来越慢;协同冻结模式下60 d后保温与不保温的冻土厚度之差约为冻结20 d的2倍。可以把空顶管作为“大冻结管”来考虑,利用异形加强冻结管对空顶管内部整体降温,更有利于顶管周围冻土帷幕的发展。