电动修复是一种适用于低渗透性土壤的原位修复技术,其过程中污染物的迁移与水分迁移密切相关。尽管已有研究探讨了电场作用下融土的水分迁移规律,但受重金属污染冻土的水分迁移规律尚不明确。本文研究了铅(Pb)污染冻土在电场作用下的水分迁移规律,讨论了温度、铅离子(Pb2+)浓度和电势梯度对水分迁移量和电流的影响。研究结果表明,在电场作用下,随温度、Pb2+浓度和电势梯度的降低,电流的变化规律逐渐从有峰值的形式过渡到无峰值的形式,且峰值的出现时间逐渐延长。同时,水分向阴极迁移,水分迁移量随Pb2+浓度的增加而下降,随电势梯度的增加而增加,温度对水分迁移量的影响则与Pb2+的迁移方式密切相关。尽管较高的电势梯度会促进水分迁移,但在温度和Pb2+浓度较低的条件下,高电势梯度可能导致阴极处过早形成难溶性沉淀,这些沉淀物会阻碍水分的进一步迁移,从而降低电动修复的整体效率。因此,在实际应用中,需要综合考虑电势梯度和温度的影响,以优化水分迁移并减少沉淀物的形成。
电动修复是一种适用于低渗透性土壤的原位修复技术,其过程中污染物的迁移与水分迁移密切相关。尽管已有研究探讨了电场作用下融土的水分迁移规律,但受重金属污染冻土的水分迁移规律尚不明确。本文研究了铅(Pb)污染冻土在电场作用下的水分迁移规律,讨论了温度、铅离子(Pb2+)浓度和电势梯度对水分迁移量和电流的影响。研究结果表明,在电场作用下,随温度、Pb2+浓度和电势梯度的降低,电流的变化规律逐渐从有峰值的形式过渡到无峰值的形式,且峰值的出现时间逐渐延长。同时,水分向阴极迁移,水分迁移量随Pb2+浓度的增加而下降,随电势梯度的增加而增加,温度对水分迁移量的影响则与Pb2+的迁移方式密切相关。尽管较高的电势梯度会促进水分迁移,但在温度和Pb2+浓度较低的条件下,高电势梯度可能导致阴极处过早形成难溶性沉淀,这些沉淀物会阻碍水分的进一步迁移,从而降低电动修复的整体效率。因此,在实际应用中,需要综合考虑电势梯度和温度的影响,以优化水分迁移并减少沉淀物的形成。
电动修复是一种适用于低渗透性土壤的原位修复技术,其过程中污染物的迁移与水分迁移密切相关。尽管已有研究探讨了电场作用下融土的水分迁移规律,但受重金属污染冻土的水分迁移规律尚不明确。本文研究了铅(Pb)污染冻土在电场作用下的水分迁移规律,讨论了温度、铅离子(Pb2+)浓度和电势梯度对水分迁移量和电流的影响。研究结果表明,在电场作用下,随温度、Pb2+浓度和电势梯度的降低,电流的变化规律逐渐从有峰值的形式过渡到无峰值的形式,且峰值的出现时间逐渐延长。同时,水分向阴极迁移,水分迁移量随Pb2+浓度的增加而下降,随电势梯度的增加而增加,温度对水分迁移量的影响则与Pb2+的迁移方式密切相关。尽管较高的电势梯度会促进水分迁移,但在温度和Pb2+浓度较低的条件下,高电势梯度可能导致阴极处过早形成难溶性沉淀,这些沉淀物会阻碍水分的进一步迁移,从而降低电动修复的整体效率。因此,在实际应用中,需要综合考虑电势梯度和温度的影响,以优化水分迁移并减少沉淀物的形成。
研究发现,通电作用下冻土中的未冻水会发生迁移,这种持续的迁移是一个复杂的物理化学过程,并最终伴随着冻胀的过程。为了探究这一电场作用对冻土的影响,选取冻结冻胀敏感性较高的粉质兰州黄土作为研究对象,分析其在3、4和5V·cm-1电势梯度作用下的阴阳极变形量、通电前后水分分布规律和电流及电能损耗。结果表明:随着电势梯度的增大,土体阴阳极变形量的差值逐渐增大,且阴极都发生膨胀,阳极发生沉降;随着电势梯度的增大,水分由阳极至阴极的迁移量增大,电流降低的幅度增大,两者变化特征与含水率差值变化特征类似;在5V·cm-1的电势梯度下,电能总能耗最大,单位含水率能耗最小。
研究发现,通电作用下冻土中的未冻水会发生迁移,这种持续的迁移是一个复杂的物理化学过程,并最终伴随着冻胀的过程。为了探究这一电场作用对冻土的影响,选取冻结冻胀敏感性较高的粉质兰州黄土作为研究对象,分析其在3、4和5V·cm-1电势梯度作用下的阴阳极变形量、通电前后水分分布规律和电流及电能损耗。结果表明:随着电势梯度的增大,土体阴阳极变形量的差值逐渐增大,且阴极都发生膨胀,阳极发生沉降;随着电势梯度的增大,水分由阳极至阴极的迁移量增大,电流降低的幅度增大,两者变化特征与含水率差值变化特征类似;在5V·cm-1的电势梯度下,电能总能耗最大,单位含水率能耗最小。