为探究测试频率对土体电导率的影响,针对多种非饱和土样开展不同测试频率及正负温度下的电导率测试试验。基于测试结果,给出不同土性及温度下的最佳测试频率。研究结果表明:正温下砂土电导率对低于10 kHz的测试频率不敏感;当测试频率大于10 kHz时,砂土电导率随测试频率增大而增大;粉土对低于100 kHz的测试频率不敏感;负温下测试频率对土体电导率的影响较正温区间显著,粉土和砂土的电导率在不同的极化区域随测试频率增大而快速增大,且增大的测试频率域随温度降低逐渐向低频扩展;粗粒土较细粒土对测试频率更敏感。
为探究测试频率对土体电导率的影响,针对多种非饱和土样开展不同测试频率及正负温度下的电导率测试试验。基于测试结果,给出不同土性及温度下的最佳测试频率。研究结果表明:正温下砂土电导率对低于10 kHz的测试频率不敏感;当测试频率大于10 kHz时,砂土电导率随测试频率增大而增大;粉土对低于100 kHz的测试频率不敏感;负温下测试频率对土体电导率的影响较正温区间显著,粉土和砂土的电导率在不同的极化区域随测试频率增大而快速增大,且增大的测试频率域随温度降低逐渐向低频扩展;粗粒土较细粒土对测试频率更敏感。
为探究测试频率对土体电导率的影响,针对多种非饱和土样开展不同测试频率及正负温度下的电导率测试试验。基于测试结果,给出不同土性及温度下的最佳测试频率。研究结果表明:正温下砂土电导率对低于10 kHz的测试频率不敏感;当测试频率大于10 kHz时,砂土电导率随测试频率增大而增大;粉土对低于100 kHz的测试频率不敏感;负温下测试频率对土体电导率的影响较正温区间显著,粉土和砂土的电导率在不同的极化区域随测试频率增大而快速增大,且增大的测试频率域随温度降低逐渐向低频扩展;粗粒土较细粒土对测试频率更敏感。
为了解大兴安岭多年冻土区森林小流域基流特征及其与降水和土壤水分的关系,利用电导率质量平衡法(CBM)进行基流分割,利用双累积曲线法(DCM)分析降水对径流组分的影响,利用交叉相关分析法(CAM)研究土壤含水量和径流组分之间的因果和时间延滞关系。结果表明:研究期流域基流流量为123.93 mm、地表径流量为65.43 mm,总径流量为189.36 mm。基流是河川径流主要补给来源,对年径流量的贡献高达65%。径流组分存在显著的季节性变化特征,其中5月份融雪径流期基流指数最低,为23%,基流随着降雨历时的增加对总径流量的贡献逐渐减少,同时,基流和土壤含水量没有显著相关关系;在生长季(7—9月份),基流指数均大于50%,其中8月份最高,达91%,基流随降雨历时的增加对总径流量的贡献逐渐增加,基流与土壤含水量存在显著相关关系(P<0.05)和延滞效应,说明流域森林土壤有良好的水分入渗、储存和排泄的水文功能。这些研究结果表明,大兴安岭多年冻土区森林小流域径流以基流为主要来源,森林土壤具有良好的水源涵养功能,起到了消洪补枯的作用。
为了解大兴安岭多年冻土区森林小流域基流特征及其与降水和土壤水分的关系,利用电导率质量平衡法(CBM)进行基流分割,利用双累积曲线法(DCM)分析降水对径流组分的影响,利用交叉相关分析法(CAM)研究土壤含水量和径流组分之间的因果和时间延滞关系。结果表明:研究期流域基流流量为123.93 mm、地表径流量为65.43 mm,总径流量为189.36 mm。基流是河川径流主要补给来源,对年径流量的贡献高达65%。径流组分存在显著的季节性变化特征,其中5月份融雪径流期基流指数最低,为23%,基流随着降雨历时的增加对总径流量的贡献逐渐减少,同时,基流和土壤含水量没有显著相关关系;在生长季(7—9月份),基流指数均大于50%,其中8月份最高,达91%,基流随降雨历时的增加对总径流量的贡献逐渐增加,基流与土壤含水量存在显著相关关系(P<0.05)和延滞效应,说明流域森林土壤有良好的水分入渗、储存和排泄的水文功能。这些研究结果表明,大兴安岭多年冻土区森林小流域径流以基流为主要来源,森林土壤具有良好的水源涵养功能,起到了消洪补枯的作用。
为了解大兴安岭多年冻土区森林小流域基流特征及其与降水和土壤水分的关系,利用电导率质量平衡法(CBM)进行基流分割,利用双累积曲线法(DCM)分析降水对径流组分的影响,利用交叉相关分析法(CAM)研究土壤含水量和径流组分之间的因果和时间延滞关系。结果表明:研究期流域基流流量为123.93 mm、地表径流量为65.43 mm,总径流量为189.36 mm。基流是河川径流主要补给来源,对年径流量的贡献高达65%。径流组分存在显著的季节性变化特征,其中5月份融雪径流期基流指数最低,为23%,基流随着降雨历时的增加对总径流量的贡献逐渐减少,同时,基流和土壤含水量没有显著相关关系;在生长季(7—9月份),基流指数均大于50%,其中8月份最高,达91%,基流随降雨历时的增加对总径流量的贡献逐渐增加,基流与土壤含水量存在显著相关关系(P<0.05)和延滞效应,说明流域森林土壤有良好的水分入渗、储存和排泄的水文功能。这些研究结果表明,大兴安岭多年冻土区森林小流域径流以基流为主要来源,森林土壤具有良好的水源涵养功能,起到了消洪补枯的作用。
为了解大兴安岭多年冻土区森林小流域基流特征及其与降水和土壤水分的关系,利用电导率质量平衡法(CBM)进行基流分割,利用双累积曲线法(DCM)分析降水对径流组分的影响,利用交叉相关分析法(CAM)研究土壤含水量和径流组分之间的因果和时间延滞关系。结果表明:研究期流域基流流量为123.93 mm、地表径流量为65.43 mm,总径流量为189.36 mm。基流是河川径流主要补给来源,对年径流量的贡献高达65%。径流组分存在显著的季节性变化特征,其中5月份融雪径流期基流指数最低,为23%,基流随着降雨历时的增加对总径流量的贡献逐渐减少,同时,基流和土壤含水量没有显著相关关系;在生长季(7—9月份),基流指数均大于50%,其中8月份最高,达91%,基流随降雨历时的增加对总径流量的贡献逐渐增加,基流与土壤含水量存在显著相关关系(P<0.05)和延滞效应,说明流域森林土壤有良好的水分入渗、储存和排泄的水文功能。这些研究结果表明,大兴安岭多年冻土区森林小流域径流以基流为主要来源,森林土壤具有良好的水源涵养功能,起到了消洪补枯的作用。
为了解大兴安岭多年冻土区森林小流域基流特征及其与降水和土壤水分的关系,利用电导率质量平衡法(CBM)进行基流分割,利用双累积曲线法(DCM)分析降水对径流组分的影响,利用交叉相关分析法(CAM)研究土壤含水量和径流组分之间的因果和时间延滞关系。结果表明:研究期流域基流流量为123.93 mm、地表径流量为65.43 mm,总径流量为189.36 mm。基流是河川径流主要补给来源,对年径流量的贡献高达65%。径流组分存在显著的季节性变化特征,其中5月份融雪径流期基流指数最低,为23%,基流随着降雨历时的增加对总径流量的贡献逐渐减少,同时,基流和土壤含水量没有显著相关关系;在生长季(7—9月份),基流指数均大于50%,其中8月份最高,达91%,基流随降雨历时的增加对总径流量的贡献逐渐增加,基流与土壤含水量存在显著相关关系(P<0.05)和延滞效应,说明流域森林土壤有良好的水分入渗、储存和排泄的水文功能。这些研究结果表明,大兴安岭多年冻土区森林小流域径流以基流为主要来源,森林土壤具有良好的水源涵养功能,起到了消洪补枯的作用。
为了解大兴安岭多年冻土区森林小流域基流特征及其与降水和土壤水分的关系,利用电导率质量平衡法(CBM)进行基流分割,利用双累积曲线法(DCM)分析降水对径流组分的影响,利用交叉相关分析法(CAM)研究土壤含水量和径流组分之间的因果和时间延滞关系。结果表明:研究期流域基流流量为123.93 mm、地表径流量为65.43 mm,总径流量为189.36 mm。基流是河川径流主要补给来源,对年径流量的贡献高达65%。径流组分存在显著的季节性变化特征,其中5月份融雪径流期基流指数最低,为23%,基流随着降雨历时的增加对总径流量的贡献逐渐减少,同时,基流和土壤含水量没有显著相关关系;在生长季(7—9月份),基流指数均大于50%,其中8月份最高,达91%,基流随降雨历时的增加对总径流量的贡献逐渐增加,基流与土壤含水量存在显著相关关系(P<0.05)和延滞效应,说明流域森林土壤有良好的水分入渗、储存和排泄的水文功能。这些研究结果表明,大兴安岭多年冻土区森林小流域径流以基流为主要来源,森林土壤具有良好的水源涵养功能,起到了消洪补枯的作用。
为了解大兴安岭多年冻土区森林小流域基流特征及其与降水和土壤水分的关系,利用电导率质量平衡法(CBM)进行基流分割,利用双累积曲线法(DCM)分析降水对径流组分的影响,利用交叉相关分析法(CAM)研究土壤含水量和径流组分之间的因果和时间延滞关系。结果表明:研究期流域基流流量为123.93 mm、地表径流量为65.43 mm,总径流量为189.36 mm。基流是河川径流主要补给来源,对年径流量的贡献高达65%。径流组分存在显著的季节性变化特征,其中5月份融雪径流期基流指数最低,为23%,基流随着降雨历时的增加对总径流量的贡献逐渐减少,同时,基流和土壤含水量没有显著相关关系;在生长季(7—9月份),基流指数均大于50%,其中8月份最高,达91%,基流随降雨历时的增加对总径流量的贡献逐渐增加,基流与土壤含水量存在显著相关关系(P<0.05)和延滞效应,说明流域森林土壤有良好的水分入渗、储存和排泄的水文功能。这些研究结果表明,大兴安岭多年冻土区森林小流域径流以基流为主要来源,森林土壤具有良好的水源涵养功能,起到了消洪补枯的作用。