我国冻土面积占国土面积的一半以上,存在大量冻融土与雷暴共存区域,直接影响电力系统接地性能。首先,分析了冻融土的导电机理,构建了冻融土的导电模型;其次,设计并搭建了冻融土电阻率与电击穿特性试验平台;最后,对我国4种冻土区典型土壤和细砂进行试验,测量土壤电阻率、临界击穿场强随水热条件变化数据,并分析变化产生的本质原因。试验结果表明:水热条件对冻融土电阻率和临界击穿场强的影响可分为冻土段、冻融土混合段和融土段;电阻率ρ和临界击穿场强Ec都随着温度的升高而降低,但只在冻融土混合段发生跳变。
近几年随着电子技术和计算机技术的高速发展,高密度电法仪器和解释软件更加先进,进一步拓宽了高密度电法在工程地质勘察和矿产资源勘查中的应用,同时遇到了更为复杂工作条件下的勘探需求。本文就高密度电法勘探时如何克服低温、冻土、地形、复杂地电特征的影响,进行有效的实践探索。
提出了降低季节性冻土地区接地电阻的方法,该方法结合多年来所积累的工程经验和参考资料,并在不同季节性冻土地区设置方式的仿真计算和实例分析的基础上完成。降低季节性冻土地区接地电阻可以适当地加长垂直接地极的长度,使得垂直接地极至少深入到土壤电阻率较低的土壤层中2~3 m,对以后的工程设计工作有一定的指导作用。
为更可靠地评价胜利煤矿F13断层的富水性,针对矿区地下冻土层的地质与地球物理特点,提出浅层瞬变电磁探测方案。通过对测试工区的网格化测线布置,并利用全程视电阻率解析算法,实现了地下岩层视电阻率立体成像。结果表明,该方法较好地反映了F13断层的富水性分布特征,能为煤矿安全生产及防治水工作提供可靠的资料,值得在该区推广应用。
季节性冻土的融冻循环过程会导致土壤电阻率和冻土层分界面随季节变化,冬季输电线路杆塔地网接地电阻可能上升,甚至超过标准限定值,影响线路的安全稳定运行。为了研究季节性冻土因素对杆塔地网接地电阻的影响,仿真研究了冻土层结构及冻土层厚度对其接地电阻的影响,并采用柔性石墨和圆钢接地材料同沟敷设的方案对实际输电线路杆塔地网进行了改造,对比分析了接地电阻的差异。研究结果表明:在不同冻土层结构和冻土层厚度情况下,柔性石墨地网相比于圆钢地网,其接地电阻最大降阻率分别达到了18. 76%和23. 65%。研究成果可为季节性冻土环境下输电线路杆塔接地降阻提供参考。
通过建立正演冻土模型,验证了将高密度电阻率法应用于冻土监测的可行性。对高密度电阻率法装置进行特殊处理,将其应用于对季节性冻土的监测,并进行了七个月份的连续监测。结果表明:高密度电阻率法在季节性冻土监测中可行;通过对实测数据进行反演处理,得到电阻率反演剖面,可以看出表层土壤在季节变化中有明显的结冻、解冻行为;并可估算出冬季冻土深度范围。
本文简要叙述了冻土电阻率的变化及其影响因素,在江仓煤矿附近的克克赛曲,采用大功率电测深和超高密度电法,垂直于河道布设,进行冻土探测的野外试验工作。综合分析野外探测结果和钻孔资料,得出以下结论:就第四系而言,冻土的电阻率值是非冻土的几倍甚至几十倍;电测深方法可以较为精确地探测冻土的上下界及其平面范围,而超高密度电法仅可以精确探测冻土的上限和平面范围,对冻土的下限探测误差较大。
甘孜理塘县建有高海拔最高的变电站,该地区是典型的季节性冻土区域,为了研究该地区地网的安全性,对该地区季节性冻土的特征进行研究。首先采用不等间距四极法对该地区的土壤进行了测量,并采集了不同深度的土壤样本,根据土壤样本及测量结果对该地区的土壤结构及电阻率进行了反演,并将反演结果与三极法测量结果进行了对比验证,最后研究了冻土层对地表电位的影响。研究结果表明:在理塘这种高海拔季节性冻土地区,冻土的温度、深度及电阻率主要受大气温度的影响,冻结时温度从表层向下温度逐步降低,土壤电阻率逐渐下降。融解时从地表与深层向中间融解,形成表层与深层土壤电阻率低,中间电阻率高的特点。接地极到达冻土层以下的非冻结区后,可以降低地表电压差,提高地网的安全性能。
为研究冻土电阻率与温度的关系,采用自制电阻测量装置,对不同温度的砂土和黏土试样进行了电阻测试。结果表明,当温度大于0℃时,土的电阻率变化不大;当温度小于0℃时,土的电阻率随温度的下降而明显上升。出现这种现象的原因在于,当温度降低至0℃以下时,土中水分随温度的降低将逐渐部分或全部冻结为冰,而冰的电阻率大于液态水的电阻率。此外,冻土的电阻率还与土的类型有关,在干密度、含水量、温度均相同的条件下,砂土的电阻率大于黏土的电阻率。
我国高纬度以及高海拔部分地区存在季节性冻土,冻土冻结后,土壤电阻率显著增加,过高的土壤电阻率会使得接地系统接地电阻、跨步电压和接触电压值升高,威胁现场设备和工作人员的安全。目前对季节性冻土的结构以及电阻率的影响因素研究较少,给高原季节性冻土地区地网设计带来了较大的难题,本文通过实地测量,得到了理塘地区冻土电阻率的数据,利用CDEGS反演出当地土壤结构模型,发现但到了松紧不同深度不同温度的冻土层内部差异很大,冻土的电阻率受外界的影响很大,尤其是受日照的影响非常大,一天之中冻土的厚度在不断变化,电阻率也在变化。