受青藏高原暖湿化的影响,多年冻土呈现快速退化状态,并由此诱发大量的冻土滑坡灾害。为深入探讨多年冻土区滑坡失稳机制,本研究基于多年冻土滑坡区活动层(融土)粉土、黏土及相应土-冰界面直剪试验结果,通过离散元分析软件MatDEM对应修正了直剪试验模型,并将数值模拟结果与直剪试验结果进行对比分析。结果表明:修正后的直剪模型可有效地对粉土和黏土进行数值模拟计算;模拟与试验结果的剪切特性曲线及抗剪强度拟合曲线变化趋势基本保持一致,且黏土抗剪强度明显低于粉土,表明土体抗剪强度随土颗粒粒度的减小而降低;在土-冰界面处,黏土-冰的抗剪强度最低,土体稳定性最弱。模拟结果中位移场图、单元连接状态图均表明在剪切过程中形成了明显的剪切带,且融土界面处及非界面处颗粒的平均配位数变化规律显示剪切带内的颗粒在试样变形中起到主要作用。此外,热量变化曲线表明,剪切过程中的热量主要来源于剪切带中上下剪切盒产生的摩擦热。本研究可为高原冻土滑坡区土体抗剪强度数值模拟研究提供有效参考模型。
受青藏高原暖湿化的影响,多年冻土呈现快速退化状态,并由此诱发大量的冻土滑坡灾害。为深入探讨多年冻土区滑坡失稳机制,本研究基于多年冻土滑坡区活动层(融土)粉土、黏土及相应土-冰界面直剪试验结果,通过离散元分析软件MatDEM对应修正了直剪试验模型,并将数值模拟结果与直剪试验结果进行对比分析。结果表明:修正后的直剪模型可有效地对粉土和黏土进行数值模拟计算;模拟与试验结果的剪切特性曲线及抗剪强度拟合曲线变化趋势基本保持一致,且黏土抗剪强度明显低于粉土,表明土体抗剪强度随土颗粒粒度的减小而降低;在土-冰界面处,黏土-冰的抗剪强度最低,土体稳定性最弱。模拟结果中位移场图、单元连接状态图均表明在剪切过程中形成了明显的剪切带,且融土界面处及非界面处颗粒的平均配位数变化规律显示剪切带内的颗粒在试样变形中起到主要作用。此外,热量变化曲线表明,剪切过程中的热量主要来源于剪切带中上下剪切盒产生的摩擦热。本研究可为高原冻土滑坡区土体抗剪强度数值模拟研究提供有效参考模型。
为探究花岗岩-混凝土组合体在寒区环境下冻融损伤规律,设计了3种不同界面粗糙度(0.61,1.18,1.69 mm)的花岗岩-混凝土组合体,利用快速冻融机模拟了冻融循环次数为0,10,20,30次的不同寒区环境,对冻融后的花岗岩-混凝土组合体外观形貌变化、质量损失、抗折强度损失、起裂韧度、断裂能等参数进行分析。结果表明:随着冻融次数的增加,试样质量损失率、纵波声速衰减和各项力学性能损失均呈增长趋势。在冻融30次后,界面粗糙度为0.61 mm的试样纵波声速降低了13.03%,抗折强度和断裂能损失率分别为73.22%和67.67%,;界面粗糙度为1.18 mm的试样纵波声速降低了12.59%,抗折强度和断裂能损失率为61.28%和69.13%;界面粗糙度为1.69 mm的试样纵波声速降低了9.67%,抗折强度和断裂能损失率为39.40%和41.97%。研究计算了花岗岩-混凝土组合体试样起裂韧度与损伤因子,得到了以上3种界面粗糙度下,组合体起裂断裂韧度与冻融循环次数线性拟合表达式,可为相关研究提供一定的参考。
为探究花岗岩-混凝土组合体在寒区环境下冻融损伤规律,设计了3种不同界面粗糙度(0.61,1.18,1.69 mm)的花岗岩-混凝土组合体,利用快速冻融机模拟了冻融循环次数为0,10,20,30次的不同寒区环境,对冻融后的花岗岩-混凝土组合体外观形貌变化、质量损失、抗折强度损失、起裂韧度、断裂能等参数进行分析。结果表明:随着冻融次数的增加,试样质量损失率、纵波声速衰减和各项力学性能损失均呈增长趋势。在冻融30次后,界面粗糙度为0.61 mm的试样纵波声速降低了13.03%,抗折强度和断裂能损失率分别为73.22%和67.67%,;界面粗糙度为1.18 mm的试样纵波声速降低了12.59%,抗折强度和断裂能损失率为61.28%和69.13%;界面粗糙度为1.69 mm的试样纵波声速降低了9.67%,抗折强度和断裂能损失率为39.40%和41.97%。研究计算了花岗岩-混凝土组合体试样起裂韧度与损伤因子,得到了以上3种界面粗糙度下,组合体起裂断裂韧度与冻融循环次数线性拟合表达式,可为相关研究提供一定的参考。
冻土-结构物界面力学行为是工程设计的重要依据,界面的力学性能受应力状态的影响。为了探究三维应力对界面力学特性的影响,开展-5℃下不同围压、粗糙度和含水率的冻土-钢三轴剪切试验,分析冻土-钢界面力学特性和抗剪强度参数指标;设计不同因素的正交试验,对各因素进行显著性分析。结果表明:含水率和粗糙度对界面抗剪强度的影响均呈先增后减的趋势,围压与界面抗剪强度呈正相关;含水率低于最优含水率时,应力-应变曲线为强应变软化型,高于最优含水率时,应力-应变曲线为弱应变软化型;冻土-钢界面抗剪强度影响因素由强到弱依次为:含水率、温度、粗糙度和围压。基于损伤力学模型,给出了考虑围压、粗糙度和含水率影响的冻土-钢界面损伤力学模型,该模型可以较好描述峰值强度前的剪应力-位移关系。研究结果可为明晰冻土与结构物界面的极限承载力提供参考。
冻土-结构物界面力学行为是工程设计的重要依据,界面的力学性能受应力状态的影响。为了探究三维应力对界面力学特性的影响,开展-5℃下不同围压、粗糙度和含水率的冻土-钢三轴剪切试验,分析冻土-钢界面力学特性和抗剪强度参数指标;设计不同因素的正交试验,对各因素进行显著性分析。结果表明:含水率和粗糙度对界面抗剪强度的影响均呈先增后减的趋势,围压与界面抗剪强度呈正相关;含水率低于最优含水率时,应力-应变曲线为强应变软化型,高于最优含水率时,应力-应变曲线为弱应变软化型;冻土-钢界面抗剪强度影响因素由强到弱依次为:含水率、温度、粗糙度和围压。基于损伤力学模型,给出了考虑围压、粗糙度和含水率影响的冻土-钢界面损伤力学模型,该模型可以较好描述峰值强度前的剪应力-位移关系。研究结果可为明晰冻土与结构物界面的极限承载力提供参考。
冻土-结构物界面力学行为是工程设计的重要依据,界面的力学性能受应力状态的影响。为了探究三维应力对界面力学特性的影响,开展-5℃下不同围压、粗糙度和含水率的冻土-钢三轴剪切试验,分析冻土-钢界面力学特性和抗剪强度参数指标;设计不同因素的正交试验,对各因素进行显著性分析。结果表明:含水率和粗糙度对界面抗剪强度的影响均呈先增后减的趋势,围压与界面抗剪强度呈正相关;含水率低于最优含水率时,应力-应变曲线为强应变软化型,高于最优含水率时,应力-应变曲线为弱应变软化型;冻土-钢界面抗剪强度影响因素由强到弱依次为:含水率、温度、粗糙度和围压。基于损伤力学模型,给出了考虑围压、粗糙度和含水率影响的冻土-钢界面损伤力学模型,该模型可以较好描述峰值强度前的剪应力-位移关系。研究结果可为明晰冻土与结构物界面的极限承载力提供参考。
冻土-结构物界面力学行为是工程设计的重要依据,界面的力学性能受应力状态的影响。为了探究三维应力对界面力学特性的影响,开展-5℃下不同围压、粗糙度和含水率的冻土-钢三轴剪切试验,分析冻土-钢界面力学特性和抗剪强度参数指标;设计不同因素的正交试验,对各因素进行显著性分析。结果表明:含水率和粗糙度对界面抗剪强度的影响均呈先增后减的趋势,围压与界面抗剪强度呈正相关;含水率低于最优含水率时,应力-应变曲线为强应变软化型,高于最优含水率时,应力-应变曲线为弱应变软化型;冻土-钢界面抗剪强度影响因素由强到弱依次为含水率、温度、粗糙度和围压。基于损伤力学模型,给出了考虑围压、粗糙度和含水率影响的冻土-钢界面损伤力学模型,该模型可以较好描述峰值强度前的剪应力-位移关系。研究结果可为明晰冻土与结构物界面的极限承载力提供参考。
冻土-结构物界面力学行为是工程设计的重要依据,界面的力学性能受应力状态的影响。为了探究三维应力对界面力学特性的影响,开展-5℃下不同围压、粗糙度和含水率的冻土-钢三轴剪切试验,分析冻土-钢界面力学特性和抗剪强度参数指标;设计不同因素的正交试验,对各因素进行显著性分析。结果表明:含水率和粗糙度对界面抗剪强度的影响均呈先增后减的趋势,围压与界面抗剪强度呈正相关;含水率低于最优含水率时,应力-应变曲线为强应变软化型,高于最优含水率时,应力-应变曲线为弱应变软化型;冻土-钢界面抗剪强度影响因素由强到弱依次为:含水率、温度、粗糙度和围压。基于损伤力学模型,给出了考虑围压、粗糙度和含水率影响的冻土-钢界面损伤力学模型,该模型可以较好描述峰值强度前的剪应力-位移关系。研究结果可为明晰冻土与结构物界面的极限承载力提供参考。
冻土-结构物界面力学行为是工程设计的重要依据,界面的力学性能受应力状态的影响。为了探究三维应力对界面力学特性的影响,开展-5℃下不同围压、粗糙度和含水率的冻土-钢三轴剪切试验,分析冻土-钢界面力学特性和抗剪强度参数指标;设计不同因素的正交试验,对各因素进行显著性分析。结果表明:含水率和粗糙度对界面抗剪强度的影响均呈先增后减的趋势,围压与界面抗剪强度呈正相关;含水率低于最优含水率时,应力-应变曲线为强应变软化型,高于最优含水率时,应力-应变曲线为弱应变软化型;冻土-钢界面抗剪强度影响因素由强到弱依次为含水率、温度、粗糙度和围压。基于损伤力学模型,给出了考虑围压、粗糙度和含水率影响的冻土-钢界面损伤力学模型,该模型可以较好描述峰值强度前的剪应力-位移关系。研究结果可为明晰冻土与结构物界面的极限承载力提供参考。