结合青藏铁路风积沙填堵块石路基特征,利用降雨观测数据,采用数值模拟计算分析降雨条件下风积沙与块石混合层的水热响应特征。结果表明:在年平均气温较高区域,降雨能够抬升冻土上限和降低冻土温度。风沙填堵块石层后,总等效体积含水量在浅表层降低,在冻土上限附近即深度-3.0~-2.0 m处呈增加趋势。同时夏季液态水体积含量和冬季体积含冰量增大,风积沙块石层下部冻土存在水分累积。天然土层下部水分含量变化小,受降雨影响不大。风沙填堵块石层后其下部土层的水分累积,会引起冷暖季节的冻胀融沉,应加强防排水设计措施,防止因路基坡脚积水造成侧向入渗。
结合青藏铁路风积沙填堵块石路基特征,利用降雨观测数据,采用数值模拟计算分析降雨条件下风积沙与块石混合层的水热响应特征。结果表明:在年平均气温较高区域,降雨能够抬升冻土上限和降低冻土温度。风沙填堵块石层后,总等效体积含水量在浅表层降低,在冻土上限附近即深度-3.0~-2.0 m处呈增加趋势。同时夏季液态水体积含量和冬季体积含冰量增大,风积沙块石层下部冻土存在水分累积。天然土层下部水分含量变化小,受降雨影响不大。风沙填堵块石层后其下部土层的水分累积,会引起冷暖季节的冻胀融沉,应加强防排水设计措施,防止因路基坡脚积水造成侧向入渗。
结合青藏铁路风积沙填堵块石路基特征,利用降雨观测数据,采用数值模拟计算分析降雨条件下风积沙与块石混合层的水热响应特征。结果表明:在年平均气温较高区域,降雨能够抬升冻土上限和降低冻土温度。风沙填堵块石层后,总等效体积含水量在浅表层降低,在冻土上限附近即深度-3.0~-2.0 m处呈增加趋势。同时夏季液态水体积含量和冬季体积含冰量增大,风积沙块石层下部冻土存在水分累积。天然土层下部水分含量变化小,受降雨影响不大。风沙填堵块石层后其下部土层的水分累积,会引起冷暖季节的冻胀融沉,应加强防排水设计措施,防止因路基坡脚积水造成侧向入渗。
结合青藏铁路风积沙填堵块石路基特征,利用降雨观测数据,采用数值模拟计算分析降雨条件下风积沙与块石混合层的水热响应特征。结果表明:在年平均气温较高区域,降雨能够抬升冻土上限和降低冻土温度。风沙填堵块石层后,总等效体积含水量在浅表层降低,在冻土上限附近即深度-3.0~-2.0 m处呈增加趋势。同时夏季液态水体积含量和冬季体积含冰量增大,风积沙块石层下部冻土存在水分累积。天然土层下部水分含量变化小,受降雨影响不大。风沙填堵块石层后其下部土层的水分累积,会引起冷暖季节的冻胀融沉,应加强防排水设计措施,防止因路基坡脚积水造成侧向入渗。
结合青藏铁路风积沙填堵块石路基特征,利用降雨观测数据,采用数值模拟计算分析降雨条件下风积沙与块石混合层的水热响应特征。结果表明:在年平均气温较高区域,降雨能够抬升冻土上限和降低冻土温度。风沙填堵块石层后,总等效体积含水量在浅表层降低,在冻土上限附近即深度-3.0~-2.0 m处呈增加趋势。同时夏季液态水体积含量和冬季体积含冰量增大,风积沙块石层下部冻土存在水分累积。天然土层下部水分含量变化小,受降雨影响不大。风沙填堵块石层后其下部土层的水分累积,会引起冷暖季节的冻胀融沉,应加强防排水设计措施,防止因路基坡脚积水造成侧向入渗。
青藏铁路多年冻土区的片石护坡路基的大量使用,起到了降低路基基底多年冻土温度和调节多年冻土人为上限形态的作用,为青藏铁路的安全运营提供技术保障。青藏铁路多年冻土区沿线沙害主要分布在线路经过的河谷及湖泊附近,在风沙危害严重地段,片石护坡孔隙被沙害掩埋,改变了片石层传热特性,影响片石护坡的降温效果。通过室内试验及现场地温监测分析,根据不同条件(有无积沙、阴阳坡)对片石护坡的降温效果进行了对比分析,研究结果表明:(1)由于片块石层的大孔隙特性,使得片块石护坡能通过暖季隔热、寒季散热这一机理来对路基体进行降温,测温数据显示降温效果良好;(2)片石护坡积沙后其降温效果明显减弱,通过片石层内0.6 m和0.8 m深度的地温积温比较,积沙路段积温明显高于无积沙路段,其中路基阳坡侧高出约50%,路基阴坡侧高出约100%。
青藏铁路多年冻土区的片石护坡路基的大量使用,起到了降低路基基底多年冻土温度和调节多年冻土人为上限形态的作用,为青藏铁路的安全运营提供技术保障。青藏铁路多年冻土区沿线沙害主要分布在线路经过的河谷及湖泊附近,在风沙危害严重地段,片石护坡孔隙被沙害掩埋,改变了片石层传热特性,影响片石护坡的降温效果。通过室内试验及现场地温监测分析,根据不同条件(有无积沙、阴阳坡)对片石护坡的降温效果进行了对比分析,研究结果表明:(1)由于片块石层的大孔隙特性,使得片块石护坡能通过暖季隔热、寒季散热这一机理来对路基体进行降温,测温数据显示降温效果良好;(2)片石护坡积沙后其降温效果明显减弱,通过片石层内0.6 m和0.8 m深度的地温积温比较,积沙路段积温明显高于无积沙路段,其中路基阳坡侧高出约50%,路基阴坡侧高出约100%。
青藏铁路多年冻土区的片石护坡路基的大量使用,起到了降低路基基底多年冻土温度和调节多年冻土人为上限形态的作用,为青藏铁路的安全运营提供技术保障。青藏铁路多年冻土区沿线沙害主要分布在线路经过的河谷及湖泊附近,在风沙危害严重地段,片石护坡孔隙被沙害掩埋,改变了片石层传热特性,影响片石护坡的降温效果。通过室内试验及现场地温监测分析,根据不同条件(有无积沙、阴阳坡)对片石护坡的降温效果进行了对比分析,研究结果表明:(1)由于片块石层的大孔隙特性,使得片块石护坡能通过暖季隔热、寒季散热这一机理来对路基体进行降温,测温数据显示降温效果良好;(2)片石护坡积沙后其降温效果明显减弱,通过片石层内0.6 m和0.8 m深度的地温积温比较,积沙路段积温明显高于无积沙路段,其中路基阳坡侧高出约50%,路基阴坡侧高出约100%。
青藏铁路多年冻土区的片石护坡路基的大量使用,起到了降低路基基底多年冻土温度和调节多年冻土人为上限形态的作用,为青藏铁路的安全运营提供技术保障。青藏铁路多年冻土区沿线沙害主要分布在线路经过的河谷及湖泊附近,在风沙危害严重地段,片石护坡孔隙被沙害掩埋,改变了片石层传热特性,影响片石护坡的降温效果。通过室内试验及现场地温监测分析,根据不同条件(有无积沙、阴阳坡)对片石护坡的降温效果进行了对比分析,研究结果表明:(1)由于片块石层的大孔隙特性,使得片块石护坡能通过暖季隔热、寒季散热这一机理来对路基体进行降温,测温数据显示降温效果良好;(2)片石护坡积沙后其降温效果明显减弱,通过片石层内0.6 m和0.8 m深度的地温积温比较,积沙路段积温明显高于无积沙路段,其中路基阳坡侧高出约50%,路基阴坡侧高出约100%。
青藏铁路多年冻土区的片石护坡路基的大量使用,起到了降低路基基底多年冻土温度和调节多年冻土人为上限形态的作用,为青藏铁路的安全运营提供技术保障。青藏铁路多年冻土区沿线沙害主要分布在线路经过的河谷及湖泊附近,在风沙危害严重地段,片石护坡孔隙被沙害掩埋,改变了片石层传热特性,影响片石护坡的降温效果。通过室内试验及现场地温监测分析,根据不同条件(有无积沙、阴阳坡)对片石护坡的降温效果进行了对比分析,研究结果表明:(1)由于片块石层的大孔隙特性,使得片块石护坡能通过暖季隔热、寒季散热这一机理来对路基体进行降温,测温数据显示降温效果良好;(2)片石护坡积沙后其降温效果明显减弱,通过片石层内0.6 m和0.8 m深度的地温积温比较,积沙路段积温明显高于无积沙路段,其中路基阳坡侧高出约50%,路基阴坡侧高出约100%。