基于1961-2020年锡林郭勒盟15个国家气象观测站积雪日数和积雪深度数据,采用线性回归、Mann-kendall突变检验及小波分析等方法,对锡林郭勒地区的积雪初日、终日,积雪日数及积雪深度分布特征进行分析。结果表明:锡林郭勒盟积雪初、终日随经纬度变化不明显;积雪初日总体明显推迟,积雪终日总体明显提前;积雪日数呈东多西少分布,并以0.128天/年的速率减少;积雪日数1月份出现峰值;阿巴嘎旗、苏尼特左旗、镶黄旗积雪日数在20世纪60年代出现了突变现象;年均积雪深度由西到东增加,最大雪深出现在乌拉盖,最大积雪深度总体随时间明显增大;12个观测站最大积雪深度在20世纪60-80年代出现了突变;积雪日数存在准8~10年周期,最大积雪深度的主要周期区域间差异较大。
基于第六次国际耦合模式比较计划(CMIP6)的历史模拟试验以及情景预估试验数据,分析了21世纪中(2035—2064年)、后期(2070—2099年)青藏高原积雪相对于参考期(1985—2014年)的变化。结果表明:相对于参考期,21世纪中、后期青藏高原平均年积雪日数、平均积雪期均表现为减少,减少幅度总体随着人为辐射强迫的增加而加大;除低强迫情景外,21世纪后期的减少幅度均大于21世纪中期;空间上总体表现为青藏高原东南部的减少幅度大于西北部。21世纪中、后期青藏高原积雪初日均表现为推迟、积雪终日均表现为提前,积雪初日推迟天数是积雪终日提前天数的1.5~2.0倍;人为辐射强迫越高,积雪初(终)日推迟(提前)天数越多;相同情景下21世纪后期积雪初(终)日推迟(提前)天数均多于21世纪中期。降雪(气温)与年积雪日数呈正(负)相关;随着人为辐射强迫的增加,降雪对年积雪日数的相对贡献率总体呈增加趋势;空间特征表现为降雪(气温)对青藏高原南部和北部(东部和西部)的年积雪日数的相对贡献更大。7—12月降雪的减少幅度大于1—6月,这可能是积雪初日推迟天数多于积雪终日提前天数的重要原因。不同情景下青藏高...
基于湖南省89个气象观测站积雪气象观测资料、NCEP/NCAR再分析资料、Hadley中心月平均海温资料及ERA5逐月再分析表层土壤湿度资料,采用相关分析、年际增量法和多元线性回归等方法,研究了影响湖南冬季积雪日数的主要因子。结果表明,前期夏季东亚夏季风指数的年际增量、7-9月太平洋海温指数、10月AAO的年际增量和9月土壤湿度指数是湖南冬季积雪日数的4个关键影响因子。选取上述4个预报因子,建立了湖南冬季积雪日数年际增量统计预测模型。模型模拟效果较好,积雪日数年际增量拟合值和实况的相关系数为0.83,积雪日数距平拟合值与实况相关系数达0.77,通过了0.001的显著性水平检验。利用2010-2018年独立样本对模型进行检验,结果显示,积雪日数距平预测值与实况同号率为7/9。基于4个关键因子建立的全省逐站冬季积雪日数预测模型,时间相关系数检验表明,湘中一带模拟效果最好。
利用经典统计学、地统计和地理信息系统方法,研究了内蒙古积雪的时空分布特征。结果表明:内蒙古积雪分布极不均匀,整体呈现东北多西南少的趋势;研究区北部积雪日数(80~170 d)明显比南部(小于45d)长,西北部地区多年平均积雪日数接近于0,东北部地区多年平均积雪日数大部分超过100 d。大多数年份不稳定积雪区域与稳定积雪区域面积占比相近,但在个别年份中,二者面积相差过大,多年无积雪覆盖区域主要分布在西部地区。SLOPE高值区主要分布在东部大兴安岭东侧、呼伦贝尔草原和锡林郭勒草原,其他地区还包括西北部巴彦淖尔、呼和浩特、包头等中部。SLOPE低值区主要分布在东部呼伦贝尔高原西侧及南部河套平原。2000—2017年,整个研究区98.37%的地区积雪日数发生变化,但变化并不显著。
根据1961-2016年秦岭地区32个气象站点的气温、降水及积雪等相关数据,运用REOF、M-K检验和小波分析等方法,对秦岭地区冷季积雪日数的时空变化和影响因子进行分析。结果表明:秦岭地区冷季多年平均积雪日数表现为北坡比南坡积雪日数多。在全球气候变暖的背景下,海拔越高积雪日数减少的越多。秦岭冷季积雪日数呈现显著减少的趋势,5个区的积雪日数年代际变化特征显著,在20世纪末到21世纪初发生了由积雪日数偏多到偏少的突变。各区冷季积雪日数的周期变化主要集中在10~20a,秦岭南坡同时也显示了较为明显的4a左右的周期变化。西北太平洋海温阶段性增暖是导致秦岭冷季积雪日数减少的外强迫因素。秦岭地区冷季平均气温的显著增暖和冷季降水量的显著减少直接造成积雪日数的减少。秦岭冷季积雪日数减少的突变要比气温增暖的突变大约滞后4~7a。
利用1971—2016年青藏高原81个气象站逐月积雪日数和45个测站第一冻结层下界观测资料,分析了青藏高原积雪冻土的时空变化特征及其与高原植被指数(NDVI)的关系,探讨了积雪冻土下垫面变化对高原植被及沙漠化的可能影响。结果表明:1)青藏高原积雪日数分布极不均匀,巴颜喀拉山和唐古拉山为高原积雪日数的大值区,且年际变率较大。2)青藏高原积雪日数总体上呈现减少趋势,平均以3.5 d/(10 a)的速率减少,且在1998年前后发生突变,减少速率进一步加快,达到5.1 d/(10 a)。3)青藏高原第一冻结层下界呈上升趋势,达到-3.7 cm/(10 a),与青藏高原增暖紧密相关。4)青藏高原NDVI呈缓慢增加趋势,与高原气温、降水的增加趋势相一致,积雪冻土的变化对不同区域植被NDVI的影响有显著差异。在气候变暖背景下,形成的暖湿环境促进积雪消融、冻土下界提升,使土壤浅层含水量增加,有利于植被恢复和生长,其结果对高原土地沙漠化防治有一定参考作用。
依据新疆阿勒泰地区气象台站观测的1961-2011年最大积雪深度、积雪日数资料与安装在库威水文站的雪特性站观测的积雪密度资料,讨论了新疆阿勒泰地区积雪的变化特征.结果表明:阿勒泰地区近50a来最大积雪深度变化均呈显著增加的趋势,且西部最大积雪深增加趋势大于东部.积雪日数变化较为复杂,在空间分布上有差异,位于最东面的富蕴和青河50a来积雪日数呈减少趋势,其余各站均为增加趋势,且东部历年平均积雪日数略高于西部,积雪日数的增加趋势比最大积雪深度增长得平缓.2011年8月-2012年9月在阿勒泰额尔齐斯河上游库威水文站架设的雪特性站观测资料表明,在额尔齐斯河源头高山区冬季积雪主要是空心化的密实化过程,升华可能是其主要的物质损失过程,引起升华的主要气象要素是气温、风速和水汽压.各站月最大冻结深度与海拔关系较为密切,随海拔的增加而增大.积雪20cm厚是积雪对下伏土壤冻结影响的一个界限,积雪厚度超过20cm就有一定的保温作用;积雪超过40cm时,气温变化对下伏土壤冻结的影响保持稳定,冻结深度也达到稳定值;但当积雪厚度超过70cm之后,冻结深度会再次发生变化,可能是由于地温从下向上的影响或地温不能与气...