古冰川地貌是研究第四纪环境演变的重要依据,无人机Li DAR技术的高精度数据使得古冰川地貌研究具有更高的分辨率,可显著提升古冰川地貌分析、冰川地貌制图的精度。青藏高原东南部的稻城古冰帽保存了大量古冰川遗迹,是研究冰川地貌的理想区域。本研究应用无人机Li DAR技术,对稻城古冰帽南缘的库照日地区槽谷出口的冰碛垄进行航测,获得库照日冰碛垄的数字高程模型(DEM)、数字正射影像(DOM)和三维点云数据,并进一步对比12.5 m、30 m分辨率的DEM成像效果,分析库照日冰碛垄的地形特征、库照日槽谷出口冰碛垄围成谷地的形态参数等。结果表明:(1)无人机Li DAR技术能快速获得高质量、高分辨率的数据,适用于小区域、地貌较复杂的地区,结合三维模型可提高对冰碛垄地貌形态的认识;(2)对库照日冰碛垄的地形特征统计可知,最内侧的K-M1垄拥有第二高的坡度平均值,K-M6垄作为独立垄拥有最大的坡度平均值;(3)库照日槽谷出口冰碛垄围成谷地的幂函数指数b值范围为0.24至0.54,小于多数槽谷的b值;V指数结果范围为0.52~0.69。本研究为基于无人机Li DAR技术的冰川地貌定量分析提供了较好的研究案...
古冰川地貌是研究第四纪环境演变的重要依据,无人机Li DAR技术的高精度数据使得古冰川地貌研究具有更高的分辨率,可显著提升古冰川地貌分析、冰川地貌制图的精度。青藏高原东南部的稻城古冰帽保存了大量古冰川遗迹,是研究冰川地貌的理想区域。本研究应用无人机Li DAR技术,对稻城古冰帽南缘的库照日地区槽谷出口的冰碛垄进行航测,获得库照日冰碛垄的数字高程模型(DEM)、数字正射影像(DOM)和三维点云数据,并进一步对比12.5 m、30 m分辨率的DEM成像效果,分析库照日冰碛垄的地形特征、库照日槽谷出口冰碛垄围成谷地的形态参数等。结果表明:(1)无人机Li DAR技术能快速获得高质量、高分辨率的数据,适用于小区域、地貌较复杂的地区,结合三维模型可提高对冰碛垄地貌形态的认识;(2)对库照日冰碛垄的地形特征统计可知,最内侧的K-M1垄拥有第二高的坡度平均值,K-M6垄作为独立垄拥有最大的坡度平均值;(3)库照日槽谷出口冰碛垄围成谷地的幂函数指数b值范围为0.24至0.54,小于多数槽谷的b值;V指数结果范围为0.52~0.69。本研究为基于无人机Li DAR技术的冰川地貌定量分析提供了较好的研究案...
古冰川地貌是研究第四纪环境演变的重要依据,无人机Li DAR技术的高精度数据使得古冰川地貌研究具有更高的分辨率,可显著提升古冰川地貌分析、冰川地貌制图的精度。青藏高原东南部的稻城古冰帽保存了大量古冰川遗迹,是研究冰川地貌的理想区域。本研究应用无人机Li DAR技术,对稻城古冰帽南缘的库照日地区槽谷出口的冰碛垄进行航测,获得库照日冰碛垄的数字高程模型(DEM)、数字正射影像(DOM)和三维点云数据,并进一步对比12.5 m、30 m分辨率的DEM成像效果,分析库照日冰碛垄的地形特征、库照日槽谷出口冰碛垄围成谷地的形态参数等。结果表明:(1)无人机Li DAR技术能快速获得高质量、高分辨率的数据,适用于小区域、地貌较复杂的地区,结合三维模型可提高对冰碛垄地貌形态的认识;(2)对库照日冰碛垄的地形特征统计可知,最内侧的K-M1垄拥有第二高的坡度平均值,K-M6垄作为独立垄拥有最大的坡度平均值;(3)库照日槽谷出口冰碛垄围成谷地的幂函数指数b值范围为0.24至0.54,小于多数槽谷的b值;V指数结果范围为0.52~0.69。本研究为基于无人机Li DAR技术的冰川地貌定量分析提供了较好的研究案...
位于青藏高原东南部的稻城古冰帽,在第四纪时期曾发生了多次冰期并保存了丰富的古冰川遗迹,是研究第四纪冰川地貌类型特征的理想区域。目前,已有学者对冰川地貌类型划分和冰川地貌制图做了相关研究,但是古冰川地貌在空间分布特征及其量化程度有待于进一步细化。因此,本文基于Google Earth Pro遥感影像和数字高程模型(DEM),运用目视解译和野外考察相结合的方法对典型冰川地貌进行定量分析并绘制了稻城古冰帽(约3 600 km2)的第四纪冰川地貌图。本文识别了该区冰川地貌中的冰川湖、冰川谷、羊背岩和冰碛垄等四种类型,初步统计了约1 096个冰川湖、370条冰川谷、41个羊背岩及1 268列冰碛垄;空间分布上,冰川湖和羊背岩主要分布在海子山夷平面上,冰川谷以古冰帽边缘区发育为主,冰碛垄则主要形成于海子山夷平面上和东、西两侧的山谷里。本研究可为第四纪冰期规模估算、古气候重建提供基础数据,也为当地的旅游规划和自然资源调查提供一定的参考。
位于青藏高原东南部的稻城古冰帽,在第四纪时期曾发生了多次冰期并保存了丰富的古冰川遗迹,是研究第四纪冰川地貌类型特征的理想区域。目前,已有学者对冰川地貌类型划分和冰川地貌制图做了相关研究,但是古冰川地貌在空间分布特征及其量化程度有待于进一步细化。因此,本文基于Google Earth Pro遥感影像和数字高程模型(DEM),运用目视解译和野外考察相结合的方法对典型冰川地貌进行定量分析并绘制了稻城古冰帽(约3 600 km2)的第四纪冰川地貌图。本文识别了该区冰川地貌中的冰川湖、冰川谷、羊背岩和冰碛垄等四种类型,初步统计了约1 096个冰川湖、370条冰川谷、41个羊背岩及1 268列冰碛垄;空间分布上,冰川湖和羊背岩主要分布在海子山夷平面上,冰川谷以古冰帽边缘区发育为主,冰碛垄则主要形成于海子山夷平面上和东、西两侧的山谷里。本研究可为第四纪冰期规模估算、古气候重建提供基础数据,也为当地的旅游规划和自然资源调查提供一定的参考。
横断山区是中国青藏高原跨入云贵高原的过渡地带,是阐明亚洲第四纪古环境变化的一个关键地区.位于横断山东北部沙鲁里山丘状高原的稻城古冰帽保留了横断山区业已发现的最老冰碛垄,它是研究该区随青藏高原隆升进入冰冻圈时间的关键证据.然而,由于该冰碛垄形成后不断被剥蚀,难以采集合适的冰川漂砾进行宇生核素暴露测年研究.本文尝试采集库照日最老冰碛垄表面碎屑物质以及冰碛垄剖面样品进行宇生核素10Be暴露测年研究.结果表明:5个冰碛垄碎屑物质样品的10Be最小暴露年代为(187.4±1.5)ka至(576.8±4.3)ka,说明冰碛垄受到严重的剥蚀.应用基于剖面样品宇生核素10Be浓度的深度剖面法,通过模拟获得“暴露年代-侵蚀速率-继承性核素”数据集,再通过卡方检验拟合得到了最佳冰碛垄的形成年代(626.0±52.5)ka.因此,我们认为库照日最老冰碛垄(E垄)的形成年代大约为0.63Ma,对应于深海氧同位素16阶段.此次冰期发生可能是“昆仑-黄河运动”导致青藏高原隆升进入冰冻圈后发育的第四纪以来的最大冰期.
横断山区是中国青藏高原跨入云贵高原的过渡地带,是阐明亚洲第四纪古环境变化的一个关键地区.位于横断山东北部沙鲁里山丘状高原的稻城古冰帽保留了横断山区业已发现的最老冰碛垄,它是研究该区随青藏高原隆升进入冰冻圈时间的关键证据.然而,由于该冰碛垄形成后不断被剥蚀,难以采集合适的冰川漂砾进行宇生核素暴露测年研究.本文尝试采集库照日最老冰碛垄表面碎屑物质以及冰碛垄剖面样品进行宇生核素10Be暴露测年研究.结果表明:5个冰碛垄碎屑物质样品的10Be最小暴露年代为(187.4±1.5)ka至(576.8±4.3)ka,说明冰碛垄受到严重的剥蚀.应用基于剖面样品宇生核素10Be浓度的深度剖面法,通过模拟获得“暴露年代-侵蚀速率-继承性核素”数据集,再通过卡方检验拟合得到了最佳冰碛垄的形成年代(626.0±52.5)ka.因此,我们认为库照日最老冰碛垄(E垄)的形成年代大约为0.63Ma,对应于深海氧同位素16阶段.此次冰期发生可能是“昆仑-黄河运动”导致青藏高原隆升进入冰冻圈后发育的第四纪以来的最大冰期.