在列表中检索

共检索到 3

北极地区特殊的地质和岩土条件决定了常规的管道设计将面临巨大挑战,如,管道埋设深度和管道运行温度就没有标准规范可遵循。依托规划中的阿拉斯加天然气管道工程实际,利用管道与冻土热传导数值计算模型对不同埋深、不同运行温度下输气管道周围土体的温度场变化进行了研究。计算结果表明:5℃正温管道加剧了冻土退化,管底下方融化深度主要受管道运行温度的影响,在浅埋、中埋、深埋3种方式下30年最大融化深度分别达到4.2 m、5.5 m和6.5 m,其中管道深埋方式对融化圈的发展具有促进作用;-1℃冷输管道可以保护冻土,有效抬升人为多年冻土上限,维持管基土处于冻结状态,3种埋深方式下人为多年冻土上限分别抬升至0.38 m、1.09 m和1.55 m,其中管道浅埋方式影响最大。建议在不连续多年冻土区管道可以采取浅埋的敷设方式,同时,通过调控管道运行温度接近-1℃,既保证了管道结构安全、保护了冻土环境,同时还能减少施工作业、降低工程投资。

期刊论文 2022-08-24

北极地区特殊的地质和岩土条件决定了常规的管道设计将面临巨大挑战,如,管道埋设深度和管道运行温度就没有标准规范可遵循。依托规划中的阿拉斯加天然气管道工程实际,利用管道与冻土热传导数值计算模型对不同埋深、不同运行温度下输气管道周围土体的温度场变化进行了研究。计算结果表明:5℃正温管道加剧了冻土退化,管底下方融化深度主要受管道运行温度的影响,在浅埋、中埋、深埋3种方式下30年最大融化深度分别达到4.2 m、5.5 m和6.5 m,其中管道深埋方式对融化圈的发展具有促进作用;-1℃冷输管道可以保护冻土,有效抬升人为多年冻土上限,维持管基土处于冻结状态,3种埋深方式下人为多年冻土上限分别抬升至0.38 m、1.09 m和1.55 m,其中管道浅埋方式影响最大。建议在不连续多年冻土区管道可以采取浅埋的敷设方式,同时,通过调控管道运行温度接近-1℃,既保证了管道结构安全、保护了冻土环境,同时还能减少施工作业、降低工程投资。

期刊论文 2022-08-24

北极地区特殊的地质和岩土条件决定了常规的管道设计将面临巨大挑战,如,管道埋设深度和管道运行温度就没有标准规范可遵循。依托规划中的阿拉斯加天然气管道工程实际,利用管道与冻土热传导数值计算模型对不同埋深、不同运行温度下输气管道周围土体的温度场变化进行了研究。计算结果表明:5℃正温管道加剧了冻土退化,管底下方融化深度主要受管道运行温度的影响,在浅埋、中埋、深埋3种方式下30年最大融化深度分别达到4.2 m、5.5 m和6.5 m,其中管道深埋方式对融化圈的发展具有促进作用;-1℃冷输管道可以保护冻土,有效抬升人为多年冻土上限,维持管基土处于冻结状态,3种埋深方式下人为多年冻土上限分别抬升至0.38 m、1.09 m和1.55 m,其中管道浅埋方式影响最大。建议在不连续多年冻土区管道可以采取浅埋的敷设方式,同时,通过调控管道运行温度接近-1℃,既保证了管道结构安全、保护了冻土环境,同时还能减少施工作业、降低工程投资。

期刊论文 2022-08-24
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页